• Title/Summary/Keyword: degraded Material

Search Result 368, Processing Time 0.03 seconds

Low Cycle Fatigue Characteristics of Duplex Stainless Steel with Degradation under Pure Torsional Load (순수 비틀림 하중하에서 열화를 고려한 2상 스데인리스강의 저주기 피로특성)

  • Gwon, Jae-Do;Park, Jung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1897-1904
    • /
    • 2002
  • Monotonic torsional and pure torsional low cycle fatigue(LCF) test with artificial degradation were performed on duplex stainless steel(CF8M). CF8M is used in pipes and valves in nuclear reactor coolant system. It was aged at 430$^{\circ}C$ for 3600hrs. Through the monotonic and LCF test, it is found that mechanical properties(i.e., yield strength, strain hardening exponent, strength coefficient etc.) increase and fatigue life(N$\sub$f/) decreases with degradation of material. The relationship between shear strain amplitude(${\gamma}$$\sub$a/)and N$\sub$f/ was proposed.

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Kim, Jeong-Pyo;Bae, Bong-Kook;Kim, Dong-Joong;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.129-136
    • /
    • 2001
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And the DC potential drop method and destructive methods such as tensile, $K_{IC}$ and hardness tests were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimate the material degradation, and to analyse the relationship between the electrical resistivity and the degree of material degradation.

  • PDF

Study on Electrical Properties of Ceramic Coated Al Bus Bar (세라믹 코팅 Al 부스바의 전기적 특성 연구)

  • Baek, Seung-Myeong;Kwak, Min-Hwan;Kwag, Dong-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1647-1650
    • /
    • 2017
  • Bus bars are used in place of cables because they can carry more electrical energy with the same volume of conductors. This paper deals with the electrical properties of ceramic coating material for busbars. A ceramic coated samples were prepared for the electrical properties test. There are two types of samples. One is a sample without degradation, and the other is a sample degraded for 30 days. Four electrical properties tests were carried out in accordance with domestic standards. Four electrical characteristics tests are AC dielectric breakdown, V-t, lighting impulse dielectric breakdown, and discharge arc. Both samples showed excellent electrical properties, and the ceramic coating material is very good insulating materials for bus bar.

A Study on Dielectric Properties of Polycarbonate Film Due to Variation of Degradation Time (열화 시간 변화에 따른 폴리카보네이트 필름의 유전 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.469-474
    • /
    • 2018
  • In this study, the capacity and FTIR of polycarbonate film that was degraded for 2, 4, and 8 h in a thermostat at $180^{\circ}C$ was measured. The results of this study are as follows. It was found that the capacity decreased with increasing degradation time and frequency. This findings suggest that the attraction between molecules and amorphous polycarbonate increased because it contains the ketone group (-C=O-) and the chain of dioxides group (-O-R-O-). Measurement by FTIR found that the time of thermal degradation has a smaller impact because the transmutation or variation of the material does not occur. Measurement by SEM magnified 1,000 times found that a longer thermal degradation time results in thermal decomposition of the specimen's particles.

A Study on the Surface Properties of Epoxy Insulator by Water Degradation (수분열화에 의한 에폭시절연재료의 표면특성에 관한 연구)

  • 임경범;이백수;김종택;정무영;황명환;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.199-202
    • /
    • 1998
  • In examining application of polymer as electrical insulators, it is very important to perform accelerated aging test substituted the process which polymer insulator is degraded for long-time by the process of short-time. The purpose of this paper is to examine the properties of water degradation which affect on the efficiency of epoxy insulator. To do this, the surface properties on epoxy insulating material have been investigated after long-time accelerated degradation in boiling water condition. The experimental results showed the contact angle and surface resistivity after treatment to decrease the sample of water treatment. In dielectric properties, dielectric constant was increased by the aging development with water treatments.

  • PDF

Environmental toxicity and biodegradation of Pseudomonas sp. EL-G527 producing biosurfactant

  • Mi Seon, Cha;Hong Ju, Son;Sang Jun, Lee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.452-454
    • /
    • 2002
  • A biosurfactant-producing microorganism, .Pseudomouos sp. EL-G527 was isolated from activated sludge by enrichment culture when grown on mineral salt medium containing n-hexadecane as a carbon source. The biosurfactant from .Pseudomonar sp. EL-G527 exhibited lesser toxicity to bacterial population than synthetic surfactants and in the biodegradation test, biosurfactant was rapidly degraded and lost its activity as surface active material after 1 day incubation. In this study, the biosurfactant from Pseudomonas sp. EL-G527 was effective surface-active compound, more biodegradable and less toxic to microbial ecosystem than various synthetic surfactants.

  • PDF

Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material (상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구)

  • Jae Hyung Yoon;Su Woong Hyun;Hee Jun Jeong;Dong Ho Shin
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2023
  • When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.

The Influence of Forest Fire on the Characteristics of Polymer Insulator for Transmission Lines (산불영향에 따른 송전용 폴리머애자의 특성)

  • Lee Donu-Il;Chung Yong-Woon;Yu Kun-Yang;Choi In-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.127-131
    • /
    • 2005
  • Big fire such as mountain fire may cause the prevention of the functions of the overhead cables and insulators, which may affect the operation of the transmission lines. In the worst case, this kind of disaster may have a huge effect on the whole industry of a country. However, the study on the effect of the mountain fire on the transmission line is very rare. Therefore, in order to understand the effect of the mountain fire on the polymeric insulator for transmission lines, the author observed the deformation of the sheds of the polymeric insulators and the change of the discs of the porcelain insulators under fire, varying the ignition time using the artificial ignition testing equipment which simulates the mountain fire, and investigated the electrical and mechanical characteristics of the insulators after the ignition test. For the test, the miniature insulators made of polymeric material and porcelain have been utilized. As the result, the following conclusions were obtained. First, the porcelain insulator was degraded in electrical characteristics when the insulator was subjected to the fire for approximately 5 minutes; whereas, the polymeric insulator was not degraded though there were some damage on its sheds. Second, after 20 minute exposure to the fire, the polymeric insulator lost a lot of parts of sheds, but the electrical characteristics was lowered by around $20\%$, but the porcelain insulators were electrically degraded by more than $80\%$.

Fatigue Fracture Characteristics by Corrosion Degradation of 12Cr Alloy Steel (12Cr합금강의 부식열화에 의한 피로파괴 특성)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.996-1003
    • /
    • 2001
  • In order to investigate the fatigue fracture characteristics by corrosion degradation of 12Cr alloy steel, both the fatigue characteristics in air of them artificially degraded during long period and the corrosion fatigue characteristics were experimentally evaluated in various environments which were determined from electro-chemical polarization tests. And also, their fracture mechanisms were analyzed and compared, fractographyically. From their results, the fracture mechanical characteristics of it artificially degraded during long period in the distilled water, 3.5 wt.% NaCl solution and 12.7wt.%(1M) Na$_2$SO$_4$solution of 25, 60 and 90$\^{C}$ did not show distinguishable difference comparing with non-corroded one in regardless of temperature and degradation period. It means that degradation of the material by just surface corrosion does not remarkably affect to fatigue crack growth. On the other hand, the crack growth rates by corrosion fatigue increased due to activity increase of corrosive factors such as OH(sub)-,Cl(sup)- and SO$_4$(sup)- at the crack tip with temperature increase. Therefore, the crack growth rates by corrosion fatigue were more faster than that in air of the artificially degraded specimen due to the such difference of crack growth mechanism.