• 제목/요약/키워드: degraded Material

검색결과 368건 처리시간 0.032초

Nano-scale PMOSFET에서 Plasma Nitrided Oixde에 대한 소자 특성의 의존성 (Dependency of the Device Characteristics on Plasma Nitrided Oxide for Nano-scale PMOSFET)

  • 한인식;지희환;구태규;유욱상;최원호;박성형;이희승;강영석;김대병;이희덕
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.569-574
    • /
    • 2007
  • In this paper, the reliability (NBTI degradation: ${\Delta}V_{th}$) and device characteristic of nano-scale PMOSFET with plasma nitrided oxide (PNO) is characterized in depth by comparing those with thermally nitrided oxide (TNO). PNO case shows the reduction of gate leakage current and interface state density compared to TNO with no change of the $I_{D.sat}\;vs.\;I_{OFF}$ characteristics. Gate oxide capacitance (Cox) of PNO is larger than TNO and it increases as the N concentration increases in PNO. PNO also shows the improvement of NBTI characteristics because the nitrogen peak layer is located near the $Poly/SiO_2$ interface. However, if the nitrogen concentration in PNO oxide increases, threshold voltage degradation $({\Delta}V_{th})$ becomes more degraded by NBT stress due to the enhanced generation of the fixed oxide charges.

재질열화가 표면 균열 진전에 미치는 영향과 수명 예측에 관한 연구 (Effect of Temper-Embrittlement on Surface Crack Growth and Fatigue Life Prediction)

  • 권재도
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.921-927
    • /
    • 1989
  • 본 연구에서는 피로 균열의 진전 특성 및 표면 균열과 같은 3차원 균열의 진전 특성에 나타나는 재질 열화의 영향, 열화와 피로 파괴 형태의 관계, 균열진전 속도의 분산(scattering)과 열화의 관계등에 주목해서 열화재와 회복재의 2종류의 재료를 사용해, 피로 시험에 의한 균열진전의 실험적 특성을 고찰하였다. 또한, 저자들의 종래 관통 균열 진전 특성에 대한 연구 결과를 응용해서 열화와 균열진전의 확률특성을 고려한 표면균열 진전에 대한 시뮬레이션(simulation)을 행해서 피로 수명 예측에 미치는 열화의 영향에 대해 검토해 보았다.

소결온도에 따른 Zn-Pr-Co-Cr-La 산화물계 바리스터의 DC 가속열화 특성 (DC Accelerated Aging Characteristics of Zn-Pr-Co-Cr-La Oxides-Based Varistors with Sintering Temperature)

  • 김명준;유대훈;박종아;남춘우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.383-386
    • /
    • 2004
  • DC accelerated aging characteristics of Zn-Pr-Co-Cr-La oxides-based varistors were investigated with various sintering temperatures. The varistors sintered at $1240^{\circ}C$ exhibited the highest nonlinearity, with a nonlinear exponent of 79.3 and a leakage current of $0.3\;{\mu}A$, whereas completely degraded because of thermal runaway owing to low sintered density. The varistors sintered at $1250^{\circ}C$ exhibited not only a high nonlinearity with the nonlinear exponent 61.4 and the leakage current 0.7 ${\mu}A$, but also a high stability with the variation rates of varistor voltage and nonlinear exponent are -1.01% and -10.67%, respectively, under DC stress condition such as $(0.85\;V_{1mA}/115^{\circ}C/24\;h)+(0.90\;V_{1mA}/120^{\circ}C/24\;h)+(0.95\;V_{1mA}/125^{\circ}C/24\;h)+(0.95\;V_{1mA}/150^{\circ}C/24\;h)$.

  • PDF

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF

미더덕껍질 셀룰로오스의 매립 생분해성에 대한 연구 (Study for Biodegradability of Cellulose Derived from Styela clava tunics)

  • 성금용;이승현;임상구;손홍주;이영희;황대연;정영진
    • 한국염색가공학회지
    • /
    • 제27권2호
    • /
    • pp.149-154
    • /
    • 2015
  • To investigate the biodegradation of the cellulose powder(CP) derived from Styela clava tunics(SCT), some physico-chemical properties and biodegradability of SCT-CP were measured after the incubation for 45 days. The particles size of SCT-CP prepared with washing, bleaching, drying, and grinding processes was $150-400{\mu}m$ although most of particles (70%) was more than $400{\mu}m$. The cellulose structures of SCT-CP detected using the X-ray diffraction and DSC analysis was very similar with that of wood pulp powder(WP-CP). The glass transition temperature was not detected in both samples. Furthermore, more than 90% of the SCT-CP was degraded, whereas only over 70% of the WP-CP was degraded after the incubation for 45 days. Therefore, these results suggest the possibility that SCT-CP is particularly applicable to prepare medical fiber and film for disease treatment.

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells

  • Kim, Jwa-Young;Choi, Je-Yong;Jeong, Jae-Hwan;Jang, Eun-Sik;Kim, An-Sook;Kim, Seong-Gon;Kwon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.52-56
    • /
    • 2010
  • Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.

자동차 냉각기 고무호스용 재질에 대한 신뢰성 평가 및 고장메커니즘규명 (Reliability Analysis and Feilure Mechanisms of Coolant Rubber Hose Materials for Automotive Radiator)

  • 곽승범;최낙삼;강봉성;신세문
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.152-162
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under the thermal and mechanical loadings. In this study, test analysis was carried out for evaluating the degradation and failure mechanisms of coolant hose materials. Two kinds of EPDM rubber materials applicable to the hoses were adopted: commonly-used ethylene-propylene diene monomer(EPDM) rubbers and EPDM rubbers with high resistance against electro-chemical degradation (ECD). An increase of surface hardness and a large reduction of failure strain were shown due to the formation of oxidation layer for the specimens which had been kept in a high temperature air chamber. Coolant ageing effects took place only by an amount of pure thermal degradation. The specimens degraded by ECD test showed a swelling behavior and a considerable increase in weight on account of the penetration of coolant liquid into the skin and interior of the rubber specimens. The ECD induced material softening as well as drastic reduction in strength and failure strain. However EPDM rubbers designed for high resistance against ECD revealed a large improvement in reduction of failure strain and weight. This study finally established a procedure for reliability analysis and evaluation of the degradation and failure mechanisms of EPDM rubbers used in coolant hoses for automobile radiators.

Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권1호
    • /
    • pp.48-52
    • /
    • 2015
  • The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers.

The Designing of an Air-gap Type FBAR Filter using Leach Equivalent Model

  • Choi, Hyung-Wook;Jung, Joong-Yeon;Lee, Seung-Kyu;Park, Yong-Seo;Kim, Kyung-Hwan;Shin, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.196-203
    • /
    • 2006
  • An air-gap type FBAR was designed using Leach equivalent model for analyzing a vertical structure of the FBAR. For the top electrode, Pt, and the bottom electrode, Au, of $1.2{\mu}m$ thickness and the piezoelectric of 0.8,urn thickness, the resonance and anti-resonance occurred at 2.401 GHz and 2.460 GHz, respectively. $S_{11}$ was increased and $S_{21}$ was decreased as the resonance area of FBAR was widened. We observed the characteristics of insertion loss, bandwidth and out-of-band rejection of ladder-type FBAR BPF by changing resonance areas of series and shunt resonators and by adding stages. As the resonance area of series resonator was increased, insertion loss was improved but out-of-band rejection was degraded. And as the resonance area of shunt resonator was increased, insertion loss was degraded a little but out-of-band rejection was improved even without adding stages. We, also, changed the shape of the resonance area from square shape to rectangle shape to examine the effects of the resonator shape on the characteristics of the BPF. The best performances were observed when the sizes of series and shunt resonator are $150{\mu}m{\times}l50{\mu}m\;and\;5{\mu}m{\times}50{\mu}m$, respectively. Out-of-band rejection was improved about 10dB and bandwidth was broadened from 30MHz to 100MHz utilizing inductor tuning on $2{\times}2\;and\; 4{\times}2$ ladder-type BPFs.