• 제목/요약/키워드: degradation process

검색결과 1,977건 처리시간 0.029초

고분자전해질형 연료전지 가스확산층의 내구 성능 저하에 관한 실험적 분석 (Experimental Analysis of GDL Degradation in PEM Fuel Cell)

  • 하태훈;박재만;조준현;김한상;민경덕;이은숙;정지영;김도훈;진용원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.132-132
    • /
    • 2009
  • To achieve the commercialization of PEM fuel cell, the durability problem must be solved. Recently, many researchers have focused on this durability problem and degradation studies about membrane and electrode have been reported. But durability characteristics of gas diffusion layer is not much reported yet. Durability of GDL is very important to maintain the performance of PEM fuel cell because the main function of GDL is a path of fuel and water and the GDL degradation causes the loss of the GDL function. In this study, the degradation of GDL, especially, the mechanical degradation process was investigated with the leaching test. The effect of water dissolution was observed through the test and the amount of GDL degradation was measured with various measurement methods such as weight measurement, static contact angle measurement, scanning electron microscope. After 2,000 hours test, the GDL showed structural damage and loss of hydrophobicity.

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

전경 물체 추출 기법을 이용한 전기트리 영상에서 열화 측정 (Degradation Measurement from Electrical Tree Image Using Foreground Object Extracting Skill)

  • 김형균;정기봉;고석만;오무송;김태성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.270-273
    • /
    • 2001
  • Electrical tree is studied widely by manufacture state of insulating material fare and blazing fire diagnosis system of use in phenomenon of part discharge that happen for main cause of dielectric breakdown of equipment for electric power. Use process that draw tree pattern here measuring above zero to study special quality of this electricity tree, real-time processing by image processing is proposed because reproduction of tree blazing fire process drops and pattern of tree is difficult correct quantification of tree growth by existent visual observation by involution. This research presents general process that need in image processing of tree blazing fire, and that remove various noises that happen in above zero by measuring electrical tree dividing background and complete view in measured above zero taking advantage of specially proposed complete view object abstraction techniques effectively and quantification of tree becomes easy naturally, can apply to dielectric breakdown estimate because can chase growth process of tree.

  • PDF

E. coli 불활성화와 산화제 생성에 미치는 소독 공정 결합의 영향 (Effect of Disinfection Process Combination on E. coli Deactivation and Oxidants Generation)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제20권7호
    • /
    • pp.891-898
    • /
    • 2011
  • The aim of this research was to evaluate the effect of combination of disinfection process (electrolysis, UV process) on Escherichia coli (E. coli) disinfection and oxidants (OH radical, $ClO_2$, HOCl, $H_2O_2$ and $O_3$) generation. The effect of electrolyte type (NaCl, KCl and $Na_2SO_4$) on the E. coli disinfection and oxidants generation were evaluated. The experimental results showed that performance of E. coli disinfection of electrolysis and UV single process was similar. Combination of electrolysis and UV process enhanced the E. coli disinfection and 4-carboxybenzaldehyde (4-CBA, indicator of the generation of OH radical) degradation. It is clearly showed synergy effect on disinfection and OH radical formation. However chlorine ($ClO_2$, HOCl) and oxygen type ($H_2O_2$, $O_3$) oxidants were decreased with the combination of two process. In electrolysis + UV complex process, electro-generated $H_2O_2$ and $O_3$ were reacted with UV light of UV-C lamp and increased 4-CBA degradation(increase OH radical). Disinfection of electrolyte of chlorine type was higher than that of the sulfate type electrolyte due to the higher generation of OH radical and oxidants.

오존/GAC 공정에서의 부식산 분해 특성 (Degradation of Humic Acid in Ozone/GAC Process)

  • 이동석
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.47-52
    • /
    • 2008
  • In this study, GAC adsorption, ozonation and $O_3/GAC$ hybrid processes were investigated for treatment of humic acid. The degradation characteristics and efficiencies of humic acid in each process were evaluated through pH variation, $UV_{254}$ decrease, DOC removal, change of molecular size distribution and by-products formation. DOC removal rate in $O_3/GAC$ hybrid process (80%) was higher than arithmetic sum of ozonation (38%) and GAC adsorption process (19%) by synergism. $UV_{254}$ decrease rate of humic acid was also the highest than any other processes when treated in $O_3/GAC$ hybrid process. Molecular size distribution was not significantly changed in the GAC adsorption process. Main distribution of molecular size of humic acid was converted from 3 k~30 kDa into 0.5 k~3 kDa in ozonation. But the most of large molecular sizes of humic acid converted into small molecules(smaller than 0.5 kDa) in $O_3/GAC$ hybrid process. Quantities of formaldehyde and glyoxal formed in $O_3/GAC$ hybrid process were less than the ones in ozonation.

  • PDF

철강 도금로의 예지보전을 위한 열화 기반 잔존수명 분석 (Degradation-Based Remaining Useful Life Analysis for Predictive Maintenance in a Steel Galvanizing Kettle)

  • 신준호;김창욱
    • 한국융합학회논문지
    • /
    • 제10권12호
    • /
    • pp.271-280
    • /
    • 2019
  • 제조산업 분야의 디지털트랜스포메이션의 일환인 스마트공장은 데이터 기반으로 모니터링 및 분석 그리고 예측을 통해서 의사결정 방식을 획기적으로 변화시키고 있다. 특히 설비에 대한 예지보전은 스마트공장의 핵심적인 요소로서 필요성이 증대되고 있다. 본 연구의 목적은 철강 도금공정의 예지보전을 위해 도금로 설비의 열화 특성을 고려한 잔존수명 분석과 예측모델을 산출하는 것이다. 상관성 분석, 다중회귀 분석, 주성분회귀 분석 그리고 시간의 경과에 따른 열화의 추이 파악을 위하여 이동회귀 방식을 제안하여 진행하였다. 그 결과 도금로 열화는 생산성 인자들과 주된 의존적 관계가 있으며, 특히 환경 온도 인자들의 영향성이 열화의 추이 변화에 관계가 있음을 추론할 수 있었다. 예측된 잔존수명을 활용하여 도금로 교체가 필요한 시점을 사전에 알려주는 예지보전을 구현하였다. 향후 설비의 열화 추이 파악에 본 연구에서 수행한 방안이 적절한 사례가 되어 보다 정합성 있는 예지보전 구현이 가능해지기를 기대한다.

BDD 전극을 이용한 OH 라디칼 생성과 염료 분해에 미치는 운전인자의 영향 (Effects of Operating Parameters on Electrochemical Degradation of Rhodamine B and Formation of OH Radical Using BDD Electrode)

  • 박영식;김동석
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1143-1152
    • /
    • 2010
  • The purpose of this study is to degradation of Rhodamine B (RhB, dye) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the electro-generation of OH radical) in solution using boron doped diamond (BDD) electrode. The effects of applied current (0.2~1.0 A), electrolyte type (NaCl, KCl, and $Na_2SO_4$) and electrolyte concentration (0.5~3.0 g/L), solution pH (3~11) and air flow rate (0~4 L/min) were evaluated. Experimental results showed that RhB and RNO removal tendencies appeared with the almost similar thing, except of current. Optimum current for RhB degradation was 0.6 A, however, RNO degradations was increased with increase of applied current. The RhB and RNO degradation of Cl type electrolyte were higher than that of the sulfate type. The RhB and RNO degradation were increased with increase of NaCl concentration and optimum NaCl dosage was 2.5 g/L. The RhB and RNO concentrations were not influenced by pH under pH 7. Optimum air flow rate for the oxidants generation and RhB and RNO degradation were 2 L/min. Initial removal rate of electrolysis process was expressed Langmuir - Hinshelwood equation, which is used to express the initial removal rate of UV/$TiO_$2 process.

Application of a Thermophilic Aerobic Digestion Process to Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Eom, Yong-Suk;Oh, Byung-Keun;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.570-576
    • /
    • 2001
  • Thermophilic aerobic bacteria were applied in the degradation of industrial waste activated sludge (WAS) on a laboratory scale expreiment. The performance of digestion was estimated by measuring the reduction of total suspended solids (TSS), dissolved organic carbon (DOC), and total organic carbon (TOC). Among three strains of Bacillus stearothermophilus and three strains of Thermus species, B. stearothemophilus ATCC 31197 showed the best overall efficiency level for the degradation of industrial WAS, which was collected from a wastewater treatment plant in an oil refinery factory. Industrial WAS coul be successfully detraded in a batch digestion with ATCC 31197. The stability of the digestion process with ATCC 31197 was successfully verified by semi-continuous (fill-and-draw) digestion experiment. From the results of this study, it was shown that the thermophilic aerobic digestion process with ATCC 31197 could efficiently be applied to the degradation of industrial WAS.

  • PDF

FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구 (A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication)

  • 최나연;신병철;장성욱
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.