• 제목/요약/키워드: degradation efficiency

검색결과 1,098건 처리시간 0.029초

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

Oxalic Acid와 Citric Acid UV/H2O2에 의한 분해특성 조사 (Degradation Characteristics of Oxalic Acid and Citric Acid by UV/H2O2 Oxidation)

  • 하동윤;조순행;최영수;경규석;김동현
    • 대한환경공학회지
    • /
    • 제22권7호
    • /
    • pp.1307-1318
    • /
    • 2000
  • 원자력 발전소에서 발생되는 제염폐수에 함유된 Oxalic acid와 Citric acid를 고급산화방법(Advanced Oxidation Process) 중의 하나인 $UV/H_2O_2$를 적용하여 이들 물질의 분해특성 및 최적처리조건을 파악하고자 하였다. 이를 위하여 각각의 물질에 대하여 $H_2O_2$나 UV를 단독사용할 경우, pH 및 과산화수소의 주입량 변화, Oxalic acid와 Citric acid의 농도변화에 따른 분해특성에 대하여 조사하였다. $H_2O_2$나 UV만으로도 완전분해가 가능한 반면 Citric acid는 같은 파장의 UV만으로는 분해가 잘되지 않는 것으로 조사되었다. 또한 과산화수소와는 두 물질 모두 반응성이 없는 것으로 조사되었다. 산화공정에서 반응속도상수, 반응시간, 제거효율, 과산화수소 소모량 등에 대한 결과를 종합한 결과 Oxalic acid의 경우 pH 4 이하의 낮은 pH에서, Citric acid는 pH 4~6 정도의 약산성 부근에서 높은 분해효율을 나타내는 것으로 조사되었다. 최적 pH에서는 과산화수소의 주입량이 증가할수록 두 물질 모두 제거효율이 증가하는 것으로 조사되었으나 과산화수소의 주입량이 200 mg/L 이상을 초과하는 경우에는 과산화수소에 의한 OH radical trap에 의하여 제거효율이 감소하는 것으로 조사되었다. 이상의 결과 $UV/H_2O_2$ 광분해에 의한 Oxalic acid와 Citric acid의 처리시 pH 4에서 과산화수소 주입량 200 mg/L일 경우 가장 효율적인 것으로 조사되었다.

  • PDF

Bisphenol A 분해세균의 분리 및 특성 (Isolation and Characterization of Bacteria Capable of Degrading Bisphenol A)

  • 김희식;이영기;이완석;박찬선;윤병대;오희목
    • 미생물학회지
    • /
    • 제37권3호
    • /
    • pp.189-196
    • /
    • 2001
  • 내분비계 장애물질로 잘 알려진 bisphenol A (BPA)를 단일탄소원으로 이용하여 균체성장을 나타내는 미생물 87주를 공단주변의 토양, 폐수 혹은 활성슬러지로부터 분리하였다. 분리된 균주 중 균체성장이 우수한 균주 8중을 2차 분리하였으며, 이 중 BPA분해효율이 뛰어난 3종의 균주를 BPA분해미생물로 최종 선별하였다. 최종 선별된 3종의 균주를 16s rDNA의 부분적 염기서열 및 형태학적, 생리학적 특성조사를 통해 Serratia maycescens 1901, S, marcescens 1902 그리고 Pseudomanas putida 1401로 동정되었다. BPA분해능은 HPLC분석을 통해 배양액중의 잔존 BPA 농도로 측정하였으며, 최종 선별된 3종의 균주를 대상으로 BPA가 100 mg/1흑은 500 mg/l의 농도로 포함된 최소 무기염 배지(PAS) 및 비타민을 포함하는 PAS인 PAV 배지에서 배양하여 BPA 분해능을 조사한 결과 20-40%의 분해효율을 나타내었다. 이들 균주의 균체성장은 PAS 배지에서 보다 PAV배지에서 우수하였다. S. marcescens 1901은 저농도(100 mg/l) BPA에서 분해효율이 다른 2종의 균주보다 우수하였고, S. marcescens 1902와 P. putida 1401은 고농도(500 mg/l)에서 BPA분해효율이 높았다. 선별된 3균주의 순수배양과 흔합배양에 의한 BPA분해효율을 비교한 결과, 유의한 차이는 나타나지 않았다.

  • PDF

Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045

  • Lee, Aslan Hwanhwi;Lee, Hanbyul;Kim, Jae-Jin
    • 환경생물
    • /
    • 제34권3호
    • /
    • pp.201-207
    • /
    • 2016
  • The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.

가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구 (A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

Photocatalysis of Low Concentration of Gaseous-Phase Benzene Using Visible-Light Irradiated N-doped and S-doped Titanium Dioxide

  • Jo, Wan-Kuen;Kim, Jong-Tae
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Studies on visible-light-driven photocatalysis of air pollutants at indoor air quality (IAQ) levels have been limited. Current study investigated visible-light derived photocatalysis with N-doped and S-doped titanium dioxide ($TiO_2$) for the control of benzene at indoor levels. Two preparation processes were employed for each of the two types of photocatalyst: urea-Degussa P-25 $TiO_2$ and titania-colloid methods for the N-doped $TiO_2$; and titanium isopropoxid- and tetraisopropoxide-thiourea methods for the S-doped $TiO_2$. Furthermore, two coating methods (EDTA- and acetylacetone-dissolving methods) were tested for both the N-doped and S-doped $TiO_2$. The two coating methods exhibited different photocatalytic degradation efficiency for the N-doped photocatalysts, whereas they did not exhibit any difference for the S-doped photocatalysts. In addition, the two doping processes showed different photocatalytic degradation efficiency for both the S-doped and N-doped photocatalysts. For both the N-doped and S-doped $TiO_2$, the photocatalytic oxidation (PCO) efficiency increased as the hydraulic diameter (HD) decreased. The degradation efficiency determined via a PCO system with visible-light induced $TiO_2$ was lower than that with UV-light induced unmodified $TiO_2$, which was obtained from previous studies. Nevertheless, it is noteworthy that for the photocatalytic annular reactor with the HD of 0.5 cm, PCO efficiency increased up to 52% for the N-doped $TiO_2$ and 60% for the S-doped $TiO_2$. Consequently, when combined with the advantage of visible light use over UV light use, it is suggested that with appropriate HD conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.

주물 공단 용해공정의 송풍기 및 백필터 관리 실태 (The Status of Maintenance of Exhaust Fans and Bag filters in Melting Processes in a foundry industrial complex)

  • 김태형;하현철;정춘화;서정윤;박승욱;양준호;이효우
    • 한국산업보건학회지
    • /
    • 제17권3호
    • /
    • pp.212-223
    • /
    • 2007
  • 18 Local exhaust ventilation systems in 10 melting companies located in an industrial complex were tested to know the status of maintenance. Test items were fan flowrates, fan static pressures, rotational speeds and differential pressures of bag filters. Only 22% of the tested fans has more than 80% flowrate efficiency. 44% of the fans has lower than 60% efficiency. The performance of the fans are not in a good status. For the fans with lower than 60% efficiency, the analysis shows that the lower flowrate might be caused by the degradation of fan performance. On the other hand, for the fan s with higher than 60% efficiency, the main cause of flowrate reduction might be too much pressure losses due to clogging of filter bags. The degradation of fans usually lead the reduction of hood capture efficiency, resulting in the increase of contaminant concentrations in workplace. To keep fans in good status, self inspections should be periodically conducted. This inspection should include the measurements of flowrate and pressures. The most important thing to be performed is the initial test of local exhaust ventilation system because the initial test data should be used to know the level of system degradation.

Synthesis of CuO/ZnO Nanoparticles and Their Application for Photocatalytic Degradation of Lidocaine HCl by the Trial-and-error and Taguchi Methods

  • Giahi, M.;Badalpoor, N.;Habibi, S.;Taghavi, H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2176-2182
    • /
    • 2013
  • A novel sol-gel method was implied to prepare CuO-doped ZnO nanoparticles. XRD and SEM techniques were used to characterize the CuO-doped ZnO sample. The photocatalytic degradation of Lidocaine HCl was investigated by two methods. The degradation was studied under different conditions such as the amount of photocatalyst, pH of the system, initial concentration, presence of electron acceptor, and presence of anions. The results showed that they strongly affected the photocatalytic degradation of Lidocaine HCl. The photodegradation efficiency of drug increased with the increase of the irradiation time. After 6 h irradiation with 400-W mercury lamp, about 93% removal of Lidocaine HCl was achieved. The degree of photodegradation obtained by Taguchi method compatible with the trial-and-error method showed reliable results.

Mechanical degradation kinetics of poly(ethylene oxide) in a turbulent flow

  • Sung, Jun-Hee;Lim, Sung-Taek;Kim, Chul-Am;Heejeong Chung;Park, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • 제16권2호
    • /
    • pp.57-62
    • /
    • 2004
  • Turbulent drag reduction (DR) efficiency of water soluble poly(ethylene oxide) (PEO) with two different molecular weights was studied as a function of polymer concentration and temperature in a turbulent flow produced via a rotating disk system. Its mechanical degradation behavior as a function of time in a turbulent flow was also analyzed using both a simple exponential decay function and a fractional exponential decay equation. The fractional exponential decay equation was found to fit the experimental data better than the simple exponential decay function. Its thermal degradation further exhibited that the susceptibility of PEO to degradation increases dramatically with increasing temperature.

Electrochemical Degradation of Benzoquinone in a Flow through Cell with Carbon Fibers

  • Yoon, Jang-Hee;Yang, Jee-Eun;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.403-407
    • /
    • 2007
  • The anodic degradation of benzoquinone(BQ), a model compound for wastewater treatment was carried out using a home-made flow-through electrochemical cell with carbon fibers. To optimize the controlled current electrolysis condition of an aqueous BQ solution, the experimental variables affecting the degradation of BQ, such as the applying current, pH, reaction time, and flow rate of the BQ solution were examined. The degradation products of the oxidation reaction were identified by High Performance Liquid Chromatography and Inductively Coupled Plasma Atomic Emission Spectrometer. Low molecular weight aliphatic acids, and CO2 were the major products in this experiment. The removal efficiency of BQ from the solution increased with the applying current and time. 99.23% of 1.0 × 10-2 M BQ was degraded to aliphatic acids and CO2 when the applying current is 175 mA in a 12 hr electrolysis.