• Title/Summary/Keyword: degenerate PCR primers

Search Result 46, Processing Time 0.025 seconds

Sequence Homologies of GTP-binding Domains of Rab and Rho between Plants and Yeast/Animals Suggest Structural and Functional Similarities

  • Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.85-92
    • /
    • 1996
  • Small GTP-binding proteins are divided into three major group: Ras, Rho and Ypt/Rab. They have the conserved regions designed G1 to G5 that are critical in GDP/GTP exchange, GTP-induced conformational change and GTP hydrolysis. We isolated and characterized genomic DNA or cDNAfragments encoding G1 to G3 domains of small GTP-binding protein Rab and Rho from several plant species using two different PCR-based cloning strategies. Seven rab DNA fragments were isolated from 4 different plants, mung-bean, tobacco, rice and pepper using two degenerate primers corresponding to the GTP-binding domain G1 and G3 in small GTP-binding proteins. The amino acid sequences among these rab DNA fragments and other known small GTP-binding proteins shows that they belong to the Ypt/Rab family. Six rho DNA fragments were isolated from 5 different plants, mung-bean, rice, Arabidopsis, Allium and Gonyaulax using the nested PCR method that involves four degenerate primers corresponding to the GTP-binding domain G1, G3 and G4. The rho DNA fragments cloned show more than 90% homology to each other. Sequence comparison between plant and other known Rho family genes suggests that they are closely related (67 to 82% amino acid identity). Sequence analysis and southern blot analysis of rab and rho in mung-bean suggest than thses genes are encoded by multigene family in mung-bean.

  • PDF

Cloning of laccase Gene Fragment from Coprinus congregatus by PCR (Coprinus congregatus에서 PCR에 의한 laccase 유전자의 부분 cloning)

  • 김순자;임영은;최형태
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.25-27
    • /
    • 1999
  • Degenerate primers corresponding to the sequences of the copper-binding regions in the fungal laccases were used to isolatc laccase gene specific fragment by PCR in Coprinus congregahts. A 144 bp DNA hagrnent was cloned and was identified to have 60-69 % homology with other fungal laccase genes. The predicted amino acid sequcnces showed 68-75% homology with other fungal laccase proteins.

  • PDF

Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture

  • Zhang, Yuhong;Shi, Pengjun;Liu, Wanli;Meng, Kun;Bai, Yingguo;Wang, Guozeng;Zhan, Zhichun;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.888-897
    • /
    • 2009
  • Lipase diversity in glacier soil was assessed by culture-independent metagenomic DNA fragment screening and confirmed by cell culture experiments. A set of degenerate PCR primers specific for lipases of the hormone-sensitive lipase family was designed based on conserved motifs and used to directly PCR amplify metagenomic DNA from glacier soil. These products were used to construct a lipase fragment clone library. Among the 300 clones sequenced for the analysis, 201 clones encoding partiallipases shared 51-82% identity to known lipases in GenBank. Based on a phylogenetic analysis, five divergent clusters were established, one of which may represent a previously unidentified lipase subfamily. In the culture study, 11 lipase-producing bacteria were selectively isolated and characterized by 16S rDNA sequences. Using the above-mentioned degenerate primers, seven lipase gene fragments were cloned, but not all of them could be accounted for by the clones in the library. Two full-length lipase genes obtained by TAIL-PCR were expressed in Pichia pastoris and characterized. Both were authentic lipases with optimum temperatures of ${\le}40^{\circ}C$. Our study indicates the abundant lipase diversity in glacier soil as well as the feasibility of sequence-based screening in discovering new lipase genes from complex environmental samples.

Development of an Effective PCR Technique for Analyzing T-DNA Integration Sites in Brassica Species and Its Application (배추과에서 T-DNA 도입 위치 분석을 위한 효과적인 PCR 방법 개발 및 이용)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 2015
  • Insertional mutagenesis induced by T-DNA or transposon tagging offers possibilities for analysis of gene function. However, its potential remains limited unless good methods for detecting the target locus are developed. We describe a PCR technique for efficient identification of DNA sequences adjacent to the inserted T-DNA in a higher plant, Chinese cabbage (Brassica rapa ssp. pekinensis). This strategy, which we named variable argument thermal asymmetric interlaced PCR (VA-TAIL PCR), was designed by modifying a single-step annealing-extension PCR by including a touch-up PCR protocol and using long gene-specific primers. Amplification efficiency of this PCR program was significantly increased by employing an autosegment extension method and linked sequence strategy in nested long gene-specific primers. For this technique, arbitrary degenerate (AD) primers specific to B. rapa were designed by analyzing the Integr8 proteome database. These primers showed higher accuracy and utility in the identification of flanking DNA sequences from individual transgenic Chinese cabbages in a large T-DNA inserted population. The VA-TAIL PCR method described in this study allows the identification of DNA regions flanking known DNA fragments. This method has potential biotechnological applications, being highly suitable for identification of target genomic loci in insertional mutagenesis screens.

Cloning and Sequencing of Gene Fragment of Acid Proteinase from Penicillium oxalicum HCLF-34 (Penicillium oxalicum HCLF-34로부터 Acid Proteinase의 부분유전자 Cloning 및 Sequencing)

  • 현성희;천재순;강상순;김진규
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • Acid proteinase has been discovered in Aspergillus niger (acid protease A) and Cryphonectria parasitica (acid proteinase EapC) and it plays major roles in cheese formation from milk. In this study, a partial gene encoding acid proteinase in Penicillium oxalicum HCLF-34 was cloned by using PCR with degenerate primers corresponding to highly conserved regions of the acid proteinase. The partial acid proteinase gene in P. oxalicum HCLF-34 contains an open reading frame of 438 base pairs and encodes an acid proteinase protein of 146 amino aicds. The predicted amino acid sequences showed 71 % homology with acid protease A and 67% homology with EapC.

Cloning and Phylogenetic Analysis of Chitin Synthase Gene from Entomopathogenic Fungus, Beauveria brongniartii

  • Nam, Jin-Sik;Lee, Dong-Hun;Park, Ho-Yong;Bae, Kyung-Sook
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.222-227
    • /
    • 1997
  • DNA fragments homologous to chitin synthase gene were amplified from the genomic DNA of Beauveria brongniartii by PCR using degenerate primers. Cloning and sequencing of the PCR-amplified fragments led to the identification of a gene, designated BbCHSl. Comparison of the deduced amino acid sequence of BbCHSl with those of other Euascomycetes revealed that BbCHSl is a gene for class II chitin synthase. The Blastp search of the deduced amino acid sequence of BbCHSl displayed the highest rate of similarity, 95.8%, with CHS2 of Metarhizium unisopliae. Phylogenetic analysis of the amino acid sequences confirmed the taxonomic and evolutionary position of B. brongniartii, which was previously derived by traditional fungal classification based on morphological features.

  • PDF

Isolation and Characterization of cDNA Encoding Pyridoxal Kinase from Ovine Liver

  • Lee, Hyun-Shik;Choi, Soo-Young;Kwon, Oh-Shin
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.502-505
    • /
    • 1999
  • cDNA fragments of ovine liver pyridoxal kinase were amplified by PCR using degenerate oligonucleotide primers derived from partial amino acids sequences of the enzyme. Using PCR products as probes, several overlapping cDNA clones were isolated independently from an ovine liver and a human brain cDNA library. The largest cDNA clone for each was selected for sequence analysis. The ovine liver cDNA encodes a polypeptide of 297 amino acid residues with Mr of 32,925, whereas the human clone is comprised of an open reading frame encoding 312 amino acid residues with Mr of 35,102. The deduced sequence of the human brain enzyme is completely identical to that of human testes cDNA recently reported (Hanna et al., 1997). The ovine enzymes have approximately 77% sequence identity with the human enzyme although the two sequences are completely different in the N-terminus comprising 32 residues. This result suggests that pyridoxal kinase is highly homologous in mammalian species.

  • PDF

Characterization of Superoxide Dismutase in Lactococcus lactis

  • Chang, Woo-Suk;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.732-736
    • /
    • 1999
  • The superoxide dismutase (SOD) in Lactococcus lactis was measured quantitatively and qualitatively under various culture conditions. The L. lactis SOD was induced by oxidative stress. As the concentration of paraquat to produce superoxide radicals increased, the growth of L. lactis decreased with concomitant increase of SOD activity. The SOD activity was found to be growth-phase dependent: when aerobically grown cells entered to the stationary phase, the activity increased gradually until the late stationary phase. From inhibition studies, L. lactis SOD was found to be insensitive to KCN and $H_2O_2$ which are known to inhibit Cu/ZnSOD and FeSOD, respectively. Moreover, as the concentration of manganese in the medium increased, the activity of SOD also increased. These data strongly suggested that L. lactis possessed a single manganese-containing SOD (MnSOD). Finally, a putative sod gene fragment of 510 bp was identified in L. lactis using a polymerase chain reaction (PCR) with degenerate primers designed from the deduced DNA sequences of known SOD genes.

  • PDF

Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis

  • Ahn, Jae-Hyung;Kim, Min-Cheol;Shin, Hye-Chul;Choi, Min-Kyeong;Yoon, Sang-Seek;Kim, Tae-Sung;Song, Hong-Gyu;Lee, Geon-Hyoung;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1561-1569
    • /
    • 2006
  • Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.

Molecular Cloning and Nucleotide Sequencing of a DNA Clone Encoding Arginine Decarboxylase in Rice (Oryza sativa L.) (벼의 arginine decarboxylase DNA clone의 재조합 및 염기서열 분석)

  • Hong, Sung-Hoi;Jeung, Ji-Ung;Ok, Sung-Han;Shin, Jeong-Sheop
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.112-117
    • /
    • 1996
  • Arginine decarboxylase (ADC) is the first enzyme in one of the two pathways of diamine putrescine biosynthesis in plants. The genes encoding ADC have previously been cloned from Escherichia coli, oat and tomato genome. Two degenerate oligonucleotides (17-mer) corresponding to two conserved regions of ADC were used as primers in polymerase chain reaction of rice (Oryza sativa L.) genomic DNA, and an approximately 1.0 kbp fragment was obtained. This amplified PCR product showed an open reading frame which contains 1,022 bp of nucleotide sequences. This PCR product was cloned into pGEM-originated T vector and the short 500 bp PstI digested fragment was subcloned into pGEM-3zf(+/-) vectors to facilitate sequencing. The nucleotide sequence of this PCR product showed about 74% and 70% identity with the same regions of the oat and tomato ADC cDNA sequences, respectively. The predicted amino acid sequence exhibited 45% and 62% identity with oat and tomato ADC polypeptide fragments, respectively. The sequence similarities of 34%, 47% and 38% were previously reported in oat and E. coli, tomato and oat, and tomato and E. coli ADC amino acids, respectively. Therefore, similarities and identities between rice and oat or tomato are remarkably higher than those others of the previous reports. In the highly conserved regions in both the amino acid sequence and spacing regions among the sequences of these three, rice ADC open reading frame also has the exactly same regions with the striking similarity. RNA blot analysis showed that hnc is expressed as a transcript of approximately 2.5 kbP in the rice seedling leaf tissues.

  • PDF