• Title/Summary/Keyword: deforming

Search Result 213, Processing Time 0.025 seconds

Finite Element Analysis of Externally Round Grooved Profile Ring Rolling Process (외부에 둥근 홈이 있는 형상환상압연공정의 유한요소해석)

  • 김광희;김병탁;석한길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.631-639
    • /
    • 2003
  • Ring rolling process is simulated by using the general-purpose commercial finite element analysis software, MSC.Superform. Because the deforming region is restricted to the vicinity of the roll gap, only a ring segment spanning the roll gap is analyzed in order to save computation time and cost. First, a plain ring rolling of rectangular cross-section is simulated. Comparisons between computation and experiment show good agreement in the cross-sectional configuration of the deformed ring. Then, a profile ring with an external round groove is analyzed. The rolls with and without groove have been analyzed to compare the amount of side spread. It is found that the grooves in the rolls are effective in reducing the amount of side spread.

Developed Low-priced 3kW Small Hydro Power Generation System using Composite Material (복합소재를 이용한 저가형 3kW 소수력 발전시스템 개발)

  • So, Byung Moon;Kim, Sung Hee;Han, Woo Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.84-87
    • /
    • 2018
  • As the propeller end speed increases, the propeller surface is damaged in the process of bubble formation and dropout. It is intended to prevent the corrosion of the propeller by modifying the shape of the end through the winglet structure to mitigate the cavitation phenomenon. In the case of conventional SUS materials, the cost of production is so high that plastic materials are used to prevent corrosion. This paper aims to mitigate the cavitation by deforming the shape of the end through the winglet structure by using the SMC composite material of the propeller using the existing SUS.

Noble Development of Array Type Gripper for Robot Arm

  • Lee, Jaeman;Lee, Wangheon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.185-193
    • /
    • 2022
  • For grippers of industrial robots, parallel grippers and multi-function finger grippers are used. The former has the advantage of low cost but has the disadvantage of low precision, and the latter has the advantage of excellent precision but has the disadvantage of being expensive. In this paper, we developed a grip that can detects the various shapes of the object to be gripped on the gripper surface by using mesured pressure information frome Veloset Sheet sensor so that the gripper can be gripped without deforming the surface of the gripper. Also we did not only developed the array type gripper and 4 array type grippers (ATG), but also confirmed the usefulness of array type gripper developed in this study according to the 4 predefined evaluation criteria

Effect of Machining on Hard Anodizing Surface of Aluminum (절삭가공이 알루미늄 경질 아노다이징 피막에 미치는 영향)

  • Kim, Su-Jin;Mun, Jeongil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-92
    • /
    • 2022
  • The Al3003 aluminum plate was cut by grinding, milling, sawing, and shearing, and the hard-anodizing surface of the material was investigated. Large burrs were formed during grinding and milling. The brittle anodized film split and migrated along the deformed aluminum surface. During shearing, the hard-anodized film on the blade entry surface cracks and slides along the deforming aluminum. The cutting heat increased the ductility of the aluminum and further promoted burr formation. The oil-based coolant suppressed burrs and prevented chips from sticking to the endmill. It is better to avoid the high cutting speed and slow material feed rate conditions, which increase the cutting temperature and burr in the band saw.

Deformation of Cage Nets against Flow Velocity and Optimal Design Weight of Sinker (우리형 그물의 유속에 따른 변형 및 적정 침자량)

  • 김태호;김재오;김대안
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • In order to investigate the optimal design weight of sinkers for preventing cage net from deforming in current, the model experiment on 2 types of square cage nets with different S sub(n)/S, the ratio of total area of netting projected to the perpendicular to the water flow S sub(n) to wall area of netting S, and 4 kinds of sinkers was carried out in circulation water channel. The model cage nets were made in 1/10 scale and the total weight in water of 4 sinkers attached to each corner of their bottom frames was 18, 54, 90, and 126g, respectively equivalent to 0.1, 0.3, 0.5, and 0.7 kg per unit area of prototype net. The results obtained can be summarizes as follows; Due to the deformation of each net where it was lifted towards the surface in severe conditions, its volume was reduced. This depended highly on the weight of sinkers placed in the bottom corner of cage nets, even if the variation of S sub(n)/S had a little effect on their deformation in current less than 0.4 m/s. In addition, it was observed that the total weight of sinkers for preventing the net from deforming to the extent of less than 50% inside its initial volume was 31 to 245 kg in the range of 0.3 to 0.6 m/s and the adequate design weight of sinker was approximately 0.5 kg per its unit area.

  • PDF

Quantitative Analysis on the Structure of Hambaek Syncline (정량적(定量的) 해석(解析)에 의(依)한 함백향사(咸白向斜) 구조(構造) 연구(硏究))

  • Park, Rin Sik;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.141-158
    • /
    • 1980
  • A geologic structure could be formed through various processes, because there are a number of factors which control the deformation of the Earth's crust. In geology, we could call it geological epistemology to describe exactly a geologic structure, and call it geological logics to infer logically the deforming process through which the geologic structure had been formed. Degree of legitimacy of geological logics depends upon the degree of exactness of geological epistemology. This study described quantitatively 3-dimensional Hambaek Syncline through computer analysis, and examined qualitatively into its deforming mechanism based on the results of 3-dimensional analysis of the structure. Input data for the computer analysis are dips and dip directions of bedding planes of the structure. The Hambaek Syncline disclose a minor fold group of NE-SW or NNE-SSW trend and a large scale fold of E-W trend. The conclusions of this study are as follows: (1) The fold of E-W trend is primary fold $(F_1)$ and the minor fold group of NE-SW or NNE-SSW trend secondary fold $(F_2)$. (2) Hambaek Syncline is cylindrical type fold. (3) Apparent axial trace of Hambaek syncline does not coincide with true axial trace. The apparent axial trace is $N70^{\circ}-80^{\circ}W$ in Gohan and Sabuk area, and changes to $N70^{\circ}-80^{\circ}E$ in the westward of the area, while the true axial trace is $N40^{\circ}-70^{\circ}W$ in the former, and $N60^{\circ}-80^{\circ}E$ in the latter area. (4) Westward dipping of axial plane of the minor fold group of NE-SW or NNE-SSW trend can be attributed to simple shear movements along overthrusts. (5) Angle between axial trace and the directional trace of the maximum principal compressive stress $({\sigma}_1)$ may not be perpendicular each other. The angle between them is governed by the following factors; 1) the plunge of fold axis 2) the dip of axial surface 3) cylindrisity (6) The mean axial trace of Hambaek Syncline $(F_1)$ is $N45.6^{\circ}W$, and the directional trace of ${\sigma}_1$ is $N52.4^{\circ}E$ (7) The mean axial trace of the minor fold group of NE-SW or NNE-SSW trend $(F_2)$ is $N21^{\circ}E$, and the directional trace of ${\sigma}_1$ is $N22^{\circ}W$.

  • PDF

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Deep Drawing With Internal Air-Pressing to Increase The Limit Drawing Ratio of Aluminum Sheet

  • Moon, Young-Hoon;Kang, Yong-Kee;Park, Jin-Wook;Gong, Sung-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-464
    • /
    • 2001
  • The effects of internal air-pressing on deep drawability are investigated in this study to increase the deep drawability of aluminum sheet. The conventional deep drawing process is limited to a certain limit drawing ratio(LDR) beyond which failure will occur. The intention of this work is to examine the possibilities of relaxing the above limitation through the deep drawing with internal air-pressing, aiming towards a process with an increased drawing ratio. The idea which may lead to this goal is the use of special punch that can exert high pressure on the internal surface of deforming sheet during the deep drawing process. Over the ranges of conditions investigated for Al-1050, the local strain concentration at punch nose radius area was decreased by internal air-pressing of punch, and the deep drawing with internal air-pressing was proved to be very effective process for obtaining higher LDR.

  • PDF

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.764-772
    • /
    • 2009
  • In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.