• Title/Summary/Keyword: deformed steel

Search Result 245, Processing Time 0.024 seconds

Structural Analysis of Thermal Expansion of Aluminum Alloy Gearbox Case of High Speed Train (고속전철용 알루미늄합금 감속기 케이스의 열변형에 대한 구조해석)

  • 최진욱;민일홍;김완두;박순원;임영식
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.181-188
    • /
    • 1999
  • For weight reduction of the gearbox of power bogie of high speed train, aluminum alloy is recommended for the material of the gerabox case. In this paper, three models(Steel G/B Case-Steel BRG. Case[model-S], Aluminum G/B Case-Aluminum BRG. Case[model-A], Aluminum G/B Case-Steel BRG. Case[model-AS]) were compared to each other in the view of thermal expansion. The evaluation of the internal load, thermal expansion deformation and lug analysis were executed. It results that the 'model-A' is excessively deformed and fail in the bolt hole of bearing case. Material change of the bearing case to steel(model-AS) is effective to restrain the deformation of the inner radios of the bearing case and to prevent the failure of that.

  • PDF

Dynamic Material Property of Mn-B Alloy High-Strength Steel (Mn-B 합금계 고강도 강의 동적 물성)

  • Choi, Chang;Hong, Sungin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.124-131
    • /
    • 1996
  • The dynamic material property of Mn-B ally high-strength steel is investigated through the rod impact test which is one of simple test methods for the analysis of the material behavior under high-strain-rate. Rod impact test is performed to produce the deformed shape of rod and analyzed by the one-dimensional theory based on conservation law and the two-dimensional hydrocode AUTODYN-2D. The dynamic yield stress is determined and compared with the static yield stress to investigate the strain-rate sensitivity of Mn-B alloy high-strength steel.

  • PDF

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

Pullout Test of Retrofit Anchors using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yon-Gon
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.201-210
    • /
    • 1999
  • An experimental study was carried out to determine pullout behavior of a new type of anchor bolt that used deformed reinforcement and a commercial adhesive. Concrete slabs and columns with about 20-MPa compressive strength were used for 136 pullout tests performed. Test variables included anchor diameter (10 mm ~ 32 mm). embedment depth (10$\Phi$ or 15$\Phi$), edge effect. and Presence of transverse reinforcement in existing concrete. In Tyre-S test. where the edge or reinforcing steel effect was not included, the anchor Pullout strengths increased with increasing anchor diameters. Anchors with 15$\Phi$ embedment depth had higher Pullout strengths than those with 100 embedment depth The largest average Pullout load of 208 kN was determined for anchors made with D25 reinforcement and with 15$\Phi$ embedment depth. In Type-E tests, where the anchors were installed close to the edge of existing concrete, there were reductions in pullout strengths when compared to those determined in Type-S tests. In Type-ER tests, influence of the reinforcement in existing concrete on the anchor pullout strengths was examined using reinforced concrete and plain concrete columns Test results indicated that existing transverse reinforcement (column ties) did not help increase the pullout strength. The overall pullout test results revealed that the new anchor bolt can develop large pullout strengths while the anchors can be made of materials that are readily available in the market.

  • PDF

Direct Shear Test of Retrofit Anchors Using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yong-Gon
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2000
  • A new type of retrof=t anchor bolt that uses deformed reinforcing bars and a commercial adhesive was developed and then an experimental study was carried out to determine the behavior of the anchors in direct shear. The steel-to-concl몫ete interface was tested. Plain concrete slabs with about 20-MPa compressive strength were used for 23 direct shear tests performed Test variables were anchor diameters (D16, D22. and D29) and edge effect. Three different shear tests were completed: simple shear, edge shear where anchors were pulled against the concrete core, and edge shear where anchors were pushed against the concrete cover In the simple and the edge shear tests where the anchors were pulled against the core, the theoretical dowel strength determined by (equation omitted) was achieved but with relatively large displacements. The shear resistances increased with the increasing displacements. In the edge shear test where the anchors were pushrd against the cover, the peak shear strengths signif=cantly lower than the theoretical dowel strength were determined due to cracks developed in concrete when the edge distance was 80 mm. The peak strengths were about 50% of the dowel strength for Dl6 bar. and about 25% or less of the dowel strength for D22 and D29 bars. Test results revealed that the edge shear where the anchor was pushed against the cover controled.

  • PDF

Comparative Crashworthiness Assessment of the ULSAB-AVC Model with Advance High Strength Steel and with Low Strength Steel (고강도 강판 ULSAB-AVC 모델과 일반강판 모델의 충돌성능 비교 평가)

  • Yoon, Jong-Heon;Huh, Hoon;Kim, Se-Ho;Kim, Hong-Kee;Park, Seung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.22-27
    • /
    • 2006
  • As the regulation and assessment program for safety of passengers become stringent, automakers are required to develop lighter and safer vehicles. In order to fulfill both requirements which conflict with each other, automobile and steel companies have proposed the application of AHSS(Advance High Strength Steel) such as DP, TRIP and martensite steel. ULSAB-AVC model is one of the most remarkable reactions to offer solutions with the use of steel for the challenge to improve simultaneously the fuel efficiency, passenger safety, vehicle performance and affordability. This paper is concerned with the crash analysis of ULSAB-AVC model according to the US-SINCAP in order to compare the effectiveness between the model with AHSS and that with conventional steels. The crashworthiness is investigated by comparing the deformed shape of the cabin room, the energy absorption characteristics and the intrusion velocity of a car.

Roles of Bearing Angle in Bond Action of Reinforcing Bars to Concrete

  • Choi OanChul
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.719-724
    • /
    • 2004
  • The ribs of deformed bars can split the cover concrete by wedging action or shear off the concrete in front of the ribs. As slip of deformed bars increases, the rib face angle is flattened by the crushed concrete wedge, which reduces the rib face angle to a smaller bearing angle. The roles of bearing angle are explored to simulate this observation. Analytical expressions to determine bond strength for splitting and pullout failure are derived, where the bearing angle is a key variable. As the bearing angle is reduced, splitting strength decreases and shearing strength increases. When splitting strength becomes larger than shearing strength, the concrete key is supposed to be sheared off and the bearing angle is reduced with decreasing the splitting strength. As bars slip, bearing angle decreases continually so that splitting bond strength is maintained to be less than shearing bond strength. The bearing angle is found to play a key role in controlling the bond failure and determination of bond strength of ribbed reinforcing steel in concrete structures.

Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.949-962
    • /
    • 2016
  • The braking hose in the automotive hydraulic braking system exhibits the complicated anisotropic large deformation while its movable end is moving along the cyclic path according to the steering and bump/rebound motions of vehicle. The complicated large deformation may cause not only the interference with other adjacent automotive parts but also the durability problem resulting in the fatal microcraking. In this regard, the design of high-durable braking hose with the interference-free layout becomes a hot issue in the automotive industry. However, since it has been traditionally relied on the cost-/time-consuming trial and error experiments, the cost- and time-effective optimum design method that can replace the experiment is highly desirable. Meanwhile, the hose deformed configuration and fatigue life are different for different hose cyclic paths, so that their characteristic investigation becomes an important preliminary research subject. As a preliminary step for developing the optimum design methodology, we in this study investigate the hose deformed configuration and the fatigue life for four representative hose cyclic paths.

Analysis of Welding Deformation by Equivalent Load Method on Steel Structures (등가하중법을 이용한 강구조물 용접변형 해석)

  • 박정웅;이재원;이해우
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.129-137
    • /
    • 2002
  • This study presents a new method to derive the constraint coefficient from the degree of angular deformation caused by welding, as measured experimentally by varying the shape of welded joints and the magnitude of constraints and from analysis results given by the elastic FEM method. The equivalent load was then calculated with this constraint coefficient. The validity of the numerical analysis involved in this new method was confirmed by its agreement with the experimental results. As for the effects of the constraints based on the shape of the welded joints in the case of Butt welding when the constraint coefficients are not considered, the deformed quantity produced by analysis is larger that produced by experiment and consequently is largely affected by the constraints. However, in the case of Fillet welding, the deformed quantity is seldom affected regardless of constraint coefficient considerations.

Development of a Program for Prediction and Visualization of Welding Deformations (용접변형 예측 및 가시화 프로그램 개발)

  • 서승일;노재규;이정수
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2002
  • To prevent problems caused by welding deformation, preparation in the design stage is necessary. Countermeasures in the design stage is also the most cost-effective method. In this study, to give designers information on the welding deformation, a system to visualize the welding deformation is developed. The model to visualize the deformation is the stiffened plate common in steel structures. To increase computational efficiency, theoretical solutions to calculate the deformation of plate and stiffener are used instead of numerical analysis. Also, to secure accuracy, experiments to estimate bending moment causing welding deformations are performed. A computer program written with Visual C++ is developed for interactive data input, calculation of welding deformation and display of deformed shape. Designers can change the design in the early stage after checking the deformed shape by this system.