• Title/Summary/Keyword: deformation temperature

Search Result 2,113, Processing Time 0.027 seconds

The Prediction and Control of Plate Mechanical Properties By the Analysis of Temperature History on ROT in Hot Strip Mill (열연 권취중 냉각이력 해석을 통한 재질예측 및 제어기술 개발)

  • Lee, J.H.;Kim, H.J.;Kim, Jae-Bu;Im, Y.R.;Lee, J.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.111-113
    • /
    • 2007
  • The Mechanical properties of steel in hot strip mill were associated with the alloy composition, plastic deformation, cooling history and so on. In the case of the same alloy composition and deformation conditions, cooling history on ROT (run out table) is the main factor in affecting mechanical properties of steel, especially, in carbon steel. On ROT, the steel undergoes under various kinds of cooling conditions such as radiation, convection by air, water and wetting zone. The coiling temperature (CT) of the steel is also important factor in affecting mechanical properties. But with the same CT, the mechanical properties of steel can be different because the temperature history of cooling is more important factor than CT itself. In this study, we have studied the relations between temperature history and mechanical properties of steel and then the predicted mechanical properties have compared with the measured values.

  • PDF

Analysis of NRRO Characteristics of a HDD Spindle System Supported by Ball Bearing at Elevated Temperature (온도 상승에 따른 볼 베어링으로 지지되는HDD 회전축계 NRRO 특성 해석)

  • 김동균;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.564-571
    • /
    • 2003
  • This research investigates how characteristics of ball bearing affect non-repeatable runout(NRRO) in a HDD spindle system at elevated temperature. It shows that the elevated temperature results in the increase of bearing contact angle and the decrease of bearing deformation due to the different thermal expansion rate of the components of the HDD spindle system. The increase of contact angle at elevated temperature is so small that the variation of bearing frequencies is negligible. On the other hand, the decrease of bearing deformation at elevated temperature reduces the stiffness of ball bearing and the natural frequencies of HDD spindle system consequently, which changes the amplitude and the frequency distribution of NRRO.

  • PDF

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

A Study on Slide Way Deformation from High Frequency Heat Treatment by Finite Element Method (유한요소법을 이용한 고주파 열처리시 안내면 변형에 관한 연구)

  • 홍성오;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.57-64
    • /
    • 2002
  • Finite element program(ANSYS) estimated thermal deformation quantity in high frequency heat treatment process of a machine tool fred drive system slideway and apply deformation quantity in roughing process. Having processed the heat treatment minimizing methods of the quantity of deformation heat treatment process. Having done heat treatment with high frequency after taper processing with considering the existed heat treatment generating the quantity of deformation, existed quantity of deformation can be reduced down to 80%, consequently productivity and material saving can be achieved. When high frequency heat treatment finite element method estimated deformation quantity at difference temperature and time, it is progress at cost don and saved time.

Correlation Between Tensile-compressive Behavior and Formability of Al7050 Alloy (Al7050 합금의 인장-압축거동과 성형성 간 상관관계)

  • Bae, D.H.;Oh, J.H.;Jeong, C.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.64-72
    • /
    • 2022
  • Since aluminum alloys experience both tensile and compression deformation modes during forming process, it is important to understand the role of deformation mode on the hot formability of metallic alloys. In the present work, the hot formability of Al7050 alloy was investigated by conducting both tensile and Gleeble tests at various temperatures and strain rates. Processing maps representing low efficiency regions were observed at low temperature and high strain rate in both tensile and compressive deformation modes while the maximum efficiency regions depended on different deformation modes. Moreover, samples tested at stable processing conditions presented a smaller pore fraction than those at instable conditions that resulted in crack initiation during plastic deformation. This result shows that different deformation modes during plastic forming can affect formability changes of metallic alloys. Understanding of tension-compression behaviors will help us solve this problem.

A Convergent Investigation on the thermal and stress analyses of CPU Cooler (CPU 쿨러의 열 및 응력 해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, the thermal and stress analyses were performed by applying a temperature condition of 100℃ at CPU cooler model. The value of heat flux value is shown to be the most at the lower rod area. The upper part becomes, the smaller the heat flow rate. The highest temperature is shown at the bottom of the CPU cooler model. Overall, the upper part becomes, the smaller the temperature becomes. Based on the temperature analysis, the thermal deformation caused by expansion, the deformation becomes smaller as the upper part of the overlapping plates. The great deformation happens at the bent area of the small rod as the lower part of model and the least deformation is shown at the lowest floor of model. In addition, the maximum thermal stress of 570.63 MPa happens at the floor below model. The stress is shown to decrease as the upper part of the overlapping plates becomes. But the stress is shown to increase somewhat at the middle part of model. By applying the study result on the thermal and stress analyses of CPU cooler, this study is seen to be suitable for the aesthetic convergence.

A Study on Thermal Ratcheting Structure Test of 316L Test Cylinder (316L 시험원통의 열라체팅 구조시험에 관한 연구)

  • Lee, H.Y.;Kim, J.B.;Koo, G.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.243-249
    • /
    • 2001
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to $550^{\circ}$ and the temperature differences of about $500^{\circ}C$. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Characterization of Hot Deformation Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 고온변형거동 규명)

  • 염종택;김두현;나영상;박노광
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • Compression tests were carried out to investigate the hot-deformation behavior of Ti-6Al-4V alloy in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-i}$ to $10s^{-1}$. Under the given test conditions, the hot-deformation of Ti-6Al-4V alloy was mainly led by dynamic recovery rather than by dynamic recrystallization. The activation energy for the plastic deformation in $\alpha+\beta$ field was about 894 kJ/mol and $\beta$ field was 332kJ/mo1. Processing map for hot working are developed on the basis of the variations of efficiency of power dissipation($\eta$=2m/m+1) and flow instability criterion using the dynamic material model. The optimum process condition in the ($\alpha+\beta$) field was obtained at the temperature ranges of $930^{\circ}C$ to $955^{\circ}C$$^{\circ}C$ and a strain rate of $10^{-3}s{-1}$.

  • PDF

Autonomous Compensation of Thermal Deformation during Long-Time Machining Process (공작기계 장시간 가공중 열변형의 CNC 자율보정 기술)

  • Kim, Dong-Hoon;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2014
  • The biggest factors, which lower the machining accuracy of machine, are thermal deformation and chatter vibration. In this article, we introduce the development case of a device and technology that can automatically compensate thermal deformation errors of machine during long-time processing on the machine tool's CNC (Computerized Numerical Controller) in real time. In machine processing, the data acquisition of temperature signal in real time and auto-compensation of the machine origin of machine tools depending on thermal deformation have significant influence on improving the machining accuracy and the rate of operation. Thus, we attempts to introduce the related contents of the development we have made in this article : The development of a device that embedded the acquisition part of temperature data, linear regression to get compensation value, compensation model of neural network and a system that compensates the machine origin of machine tool automatically during manufacturing process on the CNC.