• Title/Summary/Keyword: deformation modelling

Search Result 190, Processing Time 0.027 seconds

A Study on the Deformation Behaviors around Twin Tunnels Using Scaled Model Tests (쌍굴터널 주변지반의 변형거동에 관한 모형실험 연구)

  • 김종우;박지용
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.381-390
    • /
    • 2004
  • In this study, scaled model tests were performed to investigate the deformation behaviors around twin tunnels. Eleven types of test models which had respectively different pillar widths, rock types and loading conditions were mode, where the modelling materials were the mixture of sand, plaster and water. The models with shallower pillar width were cracked under lower pressure than the models with thicker pillar width, and they showed the more tunnel convergences and the clear spatting failures. The models of hard rock were cracked under 50% higher pressure than the models of soft rock and they showed the less tunnel convergences. The failure and deformation behaviors of twin tunnels were also dependent on the loading conditions of models. Futhermore, the results of FLAC analysis were qualitatively coincident with the test results.

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

Structural stability evaluation of TBM tunnels using numerical analysis approach

  • Dohyun Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.583-591
    • /
    • 2024
  • To properly simulate the excavation process and evaluate the structural stability of the tunnel, rigorous large deformation analysis method is necessary. This study applies two most widely used numerical approaches capable of modelling and considering the large deformations behavior during excavation process to analyze and evaluate the structural stability of circular tunnel based on tunnel boring machine (TBM) excavation. By comparing and combining the results from two numerical approaches, the deformation of the excavated ground will be analyzed. The stability of the circular tunnel from TBM tunneling was assessed based on the maximum deformation occurred during the excavation process. From the numerical computation it was concluded that although the range of the damage on the ground done during excavation was found to be larger under hard rock condition, maximum deformation within the circular tunnel structure was larger under weak ground conditions and deeper tunnel depths.

An Experimental Analysis for Axisymetric Hot Extrusion Through Square Dies Using Visioplasticity Method (변형가시화법을 이용한 열간 축대칭 평금형 압출의 실험적 해석)

  • 엄태복;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.107-113
    • /
    • 1995
  • To investigate the behavior of platic deformation inaxisymmetric hot extrusion through square dies, the physical modelling with the plasticine as a model material is carried out at the room temperature. Some mechanical properties of the model material are determined by compression and ring compression tests. Visioplasticity method using experimetal grid distortion is introduced to anlayze the plastic flow, strain rate and strain distribution.

  • PDF

Crack Modelling to Determine Concrete Contribution to Shear Resistance (콘크리트 전단 기여분 결정을 위한 균열묘사 방법)

  • 조순호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.872-877
    • /
    • 2003
  • The fixed-angle based modified compression field theory (MCFT) was developed to include the slip deformation across the crack, thereby allowing for the non-coincident directions of the principal strain and stress. To investigate the significance of crack modelling on the analysis, a series of tests on beams without transverse reinforcement was predicted by both rotating- and fixed-angle crack models within the frame of the MCFT. The results predicted by the fixed-angle MCFT were comparable to those by the rotating-angle MCFT when the initial crack angle of 45deg. and the related friction law are used.

  • PDF

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials (나노구조재료의 소성변형 성질의 변형률속도 의존성)

  • Yoon Seung Chae;Kim Hyoung Seop
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Finite Element Analysis of Functionally Graded Plates using Inverse Hyperbolic Shear Deformation Theory

  • Kulkarni, Kamlesh;Singh, Bhrigu Nath;Maiti, Dipak Kumar
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Functionally graded materials (FGMs) are becoming very popular in various industries due to their effectiveness of the utilization of their constituent elements. However, the modelling of these materials is difficult due to the complex nature of variation of material properties across the thickness. Many shear deformation theories have been developed and employed for the analysis of such functionally graded plates (FGPs). A recently developed inverse hyperbolic shear deformation theory has been successfully employed by Grover et al. [1] for the analysis of laminated composites and sandwich plates. The objective of the study is to obtain finite element solution for the structural analysis of functionally graded plates using inverse hyperbolic shear deformation theory. Finite element analysis facilitates the analysis of complex problems such as functionally graded plates with different boundary conditions and different loadings.

Effect of plastic deformation on the martensitic transformations in TiNi alloy

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.311-319
    • /
    • 2022
  • A model of plastic deformation of the shape memory alloys which describes dislocation slip at the microlevel is developed. A condition similar to the Schmid law was adopted for the determination of dislocation slip onset. A description of the interaction of plastic deformation and martensitic transformations by taking into account the densities of deformation defects is proposed. It is shown that the model can correctly describe the effect of plastic strain on the shape memory effect. The proposed model is also capable of describing the two-way shape memory effect.

Plastic Deformation Behavior of Structural Nano Metallic Materials (구조용 나노금속재료의 소성변형 특성)

  • Yoon, S.C.;Pham, Q.;Bock, C.H.;Kwak, E.J.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.25-26
    • /
    • 2007
  • At the time when nanostructured materials (NSMs) are becoming a major focus of materials research, the attention of researchers is turning more to their mechanical performance. In contrast with conventional coarse grained materials, which are either strong or ductile, but rarely both at the same time, it is expected that with NSMs both high strength and ductility can be achieved and confirmed by several experimental studies. In spite of the significant interest and efforts in the mechanical properties of NSMs, deformation mechanisms during plastic deformation as well as elastic deformation are not well established yet. In this talk, the deformation mechanisms of NSMs under various grain sizes, temperatures and strain rates were investigated. It is based on recent modelling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NSMs. Based on the theoretical model that provides an adequate description of the grain size dependence of elasticity and plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NSMs, especially focusing on the deformation mechanisms was investigated.

  • PDF

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.