• Title/Summary/Keyword: deformation modelling

Search Result 190, Processing Time 0.023 seconds

Elastic Modeling for the Behavior of Undrained Pore Water Pressure in Saturated Sand (포화된 사질토에서 비배수 공극수압거동에 대한 탄성해석모델의 개발)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.43-49
    • /
    • 2005
  • In this study. it was suggested that the elastic model to analyze the behavior of pore water pressure in saturated sand specimen on the condition of non-drainage. The model based on the experiments which were performed for the relationships between the pore water pressure and the grain size of specimen, and effective stress, respectively. The suggested model embodied the pore water and soil grain as separate elastic springs of different stiffness. The springs were joined parallel and the axial strains were restricted to the same deformation. The suggested model was well consistent with the experiments.

Sensitivity and optimisation procedures for truss structures under large displacement

  • Bothma, A.S.;Ronda, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1999
  • The work presented here focuses on the development of suitable discretised formulations, for large-displacement shape and non-shape design sensitivity analysis (DSA), which enable the straightforward incorporation of structural optimisation into established finite element analysis (FEA) codes. For the generalised displacement-based functional the design sensitivity vector has been expressed in terms of displacement sensitivity. The Total Lagrangian formulation is utilised for modelling of large deformation of truss structures. The variational formulation of the sensitivity analysis procedure is discretised by using "pseudo" - finite elements, Results are presented for the sensitivity analysis and optimisation of standard truss structures. For the purposes of this work, the analysis and optimisation procedures outlined below are incorporated into the FEA code ABAQUS.

Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT

  • Chikh, Abdelbaki;Tounsi, Abdelouahed;Hebali, Habib;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • This work presents a simplified higher order shear deformation theory (HSDT) for thermal buckling analysis of cross-ply laminated composite plates. Unlike the existing HSDT, the present one has a new displacement field which introduces undetermined integral terms and contains only four unknowns. Governing equations are derived from the principle of the minimum total potential energy. The validity of the proposed theory is evaluated by comparing the obtained results with their counterparts reported in literature. It can be concluded that the proposed HSDT is accurate and simple in solving the thermal buckling behavior of laminated composite plates.

The grain size prediction of Al-5wt%Mg alloy by FEM (유한요소법을 이용한 Al-5%Mg 합금의 미세조직 크기예측)

  • 조종래
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.249-252
    • /
    • 1999
  • A numerical analysis was perfomed to predict flow curves and dynamic recrystallization behaviors of Al-5%Mg alloy on the basis of results of hot compression tests. The hot compression tests were carried out in the ranges of 350-50$0^{\circ}C$ and 5$\times${{{{ {10 }^{-3 } }}}}~3$\times${{{{ {10 }^{0 } }}}}/sec to obtain the Zener-Hollmon parameter. In the modelling equation the effects os strain hardening and dynamic recrystallization were taken into consideration. A model for predicting the evolution of microstructure in Al-5%Mg alloy during thermomechanical processing was developed in terms of dynamic recrystallization phenomena, The microstructure model was combined with finite element modeling(FEM) to predict microstructure development Model predictions showed good agreement with microstructures obtained in compression tests.

  • PDF

The Finite Element Analysis for Prediction of Residual Stresses Induced by Cold Expansion (홀확장 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Ko, Myung-Hoon;Heo, Sung-Pil;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.470-474
    • /
    • 2000
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are, expanding rate, inserting direction of mandrel, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, Two-dimensional axisymmetric finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress and plastic deformation. Maximum compressive residual stress could be increase about 7 percent using the 2-step cold expansion method.

  • PDF

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION (신발 설계 및 평가를 위한 컴퓨터 모델)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Vibration Analyses of Cylindrical Hybrid Panel with Viscoelastic Layer Based on Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1361-1369
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the nitration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model Is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

Durability Analysis on Automotive Engine Mount (자동차 엔진마운트의 내구성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Engine mount is used to soften the impact of bumper with elasticity recovery and damping capacity. Inner noise and vibration to influence the comfortableness for passenger cause the engine to the chattering phenomenon. In this study, structural analysis can be done by engine mounts designed with 3D modelling. Natural frequencies and harmonic responses are analyzed by using models with some kinds of configurations. When the simulation model is applied by the force of 600N within the range of natural frequencies, the magnitude of deformation becomes 0 to 3mm. As the number of holes around inside mount increases, the capability of vibration absorption and durability becomes larger. In case of 5holes around inside mount, it can be safest on durability. The life of mount becomes larger by changing the configuration of model. The engine mount improved with durability can be designed through the result of simulation.

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.