• 제목/요약/키워드: deformation law

검색결과 457건 처리시간 0.019초

유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 EHL 해석 (EHL Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition)

  • 김병직;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.212-217
    • /
    • 1998
  • Reynolds equation, which describes behavior of fluid film in journal bearing, basically satisfies mass conservation. But, boundary conditions usually used with this equation, e.g. half Sommerfeld or Reynolds boundary conditions, cannot fulfill this natural law of conservation. In the case of connecting rod bearing, where applied load is dynamic and its magnitude is relatively large, such unrealistic boundary conditions have serious influence on calculation results, especially on lubricant flow rate or power dissipation which are important parameters in thermal analysis. Another important factor in the analysis of connecting rod bearing is elastic deformation of bearing support structure which is relatively flexible. In this paper, EHL analysis of connecting rod beating is performed using mass-conserving boundary condition. Elastic deformation of bearing support structure and application of mass-conserving boundary condition have significant effects on the performances of connecting rod bearing.

  • PDF

고상입자의 분리현상을 고려한 Semi-Solid 알루미늄재료의 변형해석 (Deformation Analysis of Semi-Solid Aluminum Material Considering Seperation Phenomena of Solid Particles)

  • 최진석;강충길;김기훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.98-105
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can very from dendritic to globular. The estimation of behaviour characteristic in the compression simulation with seim-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for compression process is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process considering soldification phenomena is performed to the isothermal conditions of two dimensional problems. To analysis of compression process by using semi-solid materials, a new stress-strain relationship is described, and compression analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for compression force and ram displacement will be compared to experimental data.

  • PDF

304 오스테나이트계 스테인레스강의 고온변형 거동 (High Temperature Deformation Behavior of 304 Stainless Steel)

  • 조상현;김성일;노광섭;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.139-146
    • /
    • 1996
  • The torsion tests in the range of 900~1100$^{\circ}C$ and 5.0X10-2~5.0X100/sec were performed to study the high temperasture deformation behavior kinetics of 304 stainless steels. The flow curves and microstructures exhibited the characteristic of dynamic recrystallization(DRX). The relationship between the critical strain($\varepsilon$c) for the initiation of dynamic recrystallization and the peak strain($\varepsilon$p) could be expressed as $\varepsilon$c=0.73$\varepsilon$p. The dependence of the flow stress on temperature(T) and stain rate($\varepsilon$) was expressed by hyperbolic sine law, $\varepsilon$=2.75X1014 (sinh 0.076$\sigma$)5.26 exp(-379.55kJ/mol). Under the Zener-Hollomon parameter, Z value of 1013 order, it was found that the grain size was 20${\mu}$m. The relationship between the grain size, dDRX and Z parameter was expressed as dDRX =139.48-7.33 log Z.

  • PDF

AZ31B 마그네슘 합금 판재의 구성식 개발 (Constitutive Modeling of AZ31B Magnesium Alloys)

  • 이명규;정관수;김헌영
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

저속 충격시 고차이론을 이용한 복합재료 판의 동적 특성 (Dynamic Charateristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.42-48
    • /
    • 1997
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higher order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. The results compared with previous investigations showed good agreement. The effect of ply sequence and ply angle on the contact force is also studied.

  • PDF

압축하중을 받는 단순 코일 스프링에 관한 해석 결과 및 분석

  • 윤종선;이남주
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.263-265
    • /
    • 2015
  • In this paper, a coil spring of the suspension components of the car is calculated through FEM(Finite Element Method) when a portion of the one is applied by an external load. we analyze the situation by using 'Large Deformation Analysis SW' in the EDISON structural dynamics server. Results of the analysis are about a displacement of the upper spring after deformation and total mass, and we use them to calculate the spring constant and maximum von-Mises stress by using Hooke's law and von-Mises stress equation. Finally, we visualize the relationship between the calculated spring constant and the mass through graphs and this data are beneficial for industries related to the spring.

  • PDF

고차 전단 변형 이론에 의한 적층 복합판의 충격 해석 (Impact Analysis of Laminated Composite Plate Using Higher-Order Shear Deformation Theory)

  • 김문생;김남식;이현철
    • 대한기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.735-750
    • /
    • 1991
  • 본 연구에서는 적층 복합판의 충격 해석을 위하여 Reddy의 고차 전단 변형 이 론에 기초를 두고, 정적 압입 실험에 의한 접촉 법칙을 고려한 동적 유한 요소 해석 (dynamic finite element analysis)을 행하여 충격 실험에 의한 결과와 1차 전단변형 이론에 의한 해와 비교 검토하므로서, 그 유용성과 우수성을 입증하고, 적층 복합재의 충격 응력 및 응력파 전파 특성에 대하여 연구하고자 한다.

An approach for modelling fracture of shape memory alloy parts

  • Evard, Margarita E.;Volkov, Alexander E.;Bobeleva, Olga V.
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.357-363
    • /
    • 2006
  • Equations describing deformation defects, damage accumulation, and fracture condition have been suggested. Analytical and numerical solutions have been obtained for defects produced by a shear in a fixed direction. Under cyclic loading the number of cycles to failure well fits the empirical Koffin-Manson law. The developed model is expanded to the case of the micro-plastic deformation, which accompanies martensite accommodation in shape memory alloys. Damage of a shape memory specimen has been calculated for two regimes of loading: a constant stress and cyclic variation of temperature across the interval of martensitic transformations, and at a constant temperature corresponding to the pseudoelastic state and cyclic variation of stress. The obtained results are in a good qualitative agreement with available experimental data.

고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구 (Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity)

  • 이한선;고동우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.