• Title/Summary/Keyword: deformation induced martensite

Search Result 57, Processing Time 0.018 seconds

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

An Extremely Low Temperature Properties of Austenite Stainless Steels (오스테나이트 스테인리스강의 극저온 특성)

  • Jung, Chan-Hoi;Kim, Soon-Kook;Lee, Jun-Hee;Jeong, Se-Jin;Kim, Ik-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen and deformation-induced martensitic transformation on the behavior of austenite stainless steels used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing of immersion time in the liquid nitrogen, the tensile strength of all austenite stainless steels at cryogenic temperature was increased because the martensite transformation of unstable austenite. The restraint of crack generation ana transmission also increased the tensile strength by the active ${\alpha}'$ transformation. The elongation decreasing of 321 steel is not the mechanical deformation of austenite phase but the stress induced martensite phase during the tensile test.

Effect of Cold Work on the Stress Corrosion Cracking in Austenitic 304 Stainless Steel (오스테나이트 304 스테인레스 강의 응력부식균열에 미치는 냉간가공의 영향)

  • 강계명;최종운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.19-28
    • /
    • 1997
  • This study was made of the effect of cold working on the stress corrosion cracking(SCC) of austenitlc 304 stainless steel in boiling 42% $MgCl_2$ solution. For this experiment, specimens cold-worked of 0%, 10%, 20%, 30%, 40% were fabricated respectively, and then experiments of mechanical properties and stress corrosion cracking(SCC) of these specimens were carried out. The results of these experiments indicate that the maximum resistance to SCC showed at 20% of cold working degree and that the SCC susceptibility depended on the volume fraction of deformation-induced martensite by cold working and the work hardening of matrix. On the other hand, the fracture mode was changed. This phenomenon was considered that deformation-induced martensite was grown from transgranular fracture mode to intergranular fracture mode and caused by increased of dislocation density along the slip planes.

  • PDF

EFFECT OF Ni CONTENT ON THE AUSTENITE STABILITY AND MECHANICAL PROPERTIES OF NANOCRYSTALLINE Fe-Ni ALLOY FABRICATED BY SPARK PLASMA SINTERING

  • D. PARK;S.-J. OH;I.-J. SHON;S.-J. LEE
    • Archives of Metallurgy and Materials
    • /
    • v.63 no.3
    • /
    • pp.1477-1480
    • /
    • 2018
  • The mechanical behavior and the change of retained austenite of nanocrystalline Fe-Ni alloy have been investigated by considering the effect of various Ni addition amount. The nanocrystalline Fe-Ni alloy samples were rapidly fabricated by spark plasma sintering (SPS). The SPS is a well-known effective sintering process with an extremely short densification time not only to reach a theoretical density value but also to prevent a grain growth, which could result in a nanocrystalline structures. The effect of Ni addition on the compressive stress-strain behavior was analyzed. The variation of the volume fraction of retained austenite due to deformation was quantitatively measured by means of x-ray diffraction and microscope analyses. The strain-induced martensite transformation was observed in Fe-Ni alloy. The different amount of Ni influenced the rate of the strain-induced martensite transformation kinetics and resulted in the change of the work hardening during the compressive deformation.

Effect of Reversed Austenite on the Damping Capacity of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태 오스테나이트의 영향)

  • Kim, Young-Hwa;Sung, Ji-Hyun;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.70-75
    • /
    • 2015
  • The influence of reversed austenite on the damping capacity in austenitic stainless steel with two phase of martensite and reversed austenite was investigated. The two phases of deformation induced martensite and reversed austenite was obtained by an reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for various time after 70% cold rolling. With an increase of the reverse annealing treatment temperature and time, volume fraction of reversed austenite was rapidly increased. With an increase of volume fraction of reveresd austenite, damping capacity was rapidly increased. At same volume of reveresd austenite, damping capacity of reversed austenite obtained by reverse annealing treatment at $700^{\circ}C$ for various time was higher then reveresd austenite obtained by reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for 10min. Thus, the damping capacity was affected greatly by reversed austenite obtained by annealing treatment at $700^{\circ}C$ for various time.

Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys (Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향)

  • Son, D.U.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kim, H.C.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

EFFECTS OF TiC ADDITION ON STRAIN-INDUCED MARTENSITE TRANSFORMATION AND MECHANICAL PROPERTIES OF NANOCRYSTALLINE Fe-Mn ALLOY FABRICATED BY SPARK PLASMA SINTERING

  • JUNHYUB JEON;SEUNGGYU CHOI;NAMHYUK SEO;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1249-1254
    • /
    • 2020
  • The effect of TiC content on the microstructure and mechanical properties of a nanocrystalline Fe-Mn alloy was investigated by XRD analysis, TEM observation, and mechanical tests. A sintered Fe-Mn alloy sample with nano-sized crystallites was obtained using spark plasma sintering. Crystallite size, which is used as a hardening mechanism, was measured by X-ray diffraction peak analysis. It was observed that the addition of TiC influenced the average size of crystallites, resulting in a change in austenite stability. Thus, the volume fraction of austenite at room temperature after the sintering process was also modified by the TiC addition. The martensite transformation during cooling was suppressed by adding TiC, which lowered the martensite start temperature. The plastic behavior and the strain-induced martensite kinetics formed during plastic deformation are discussed with compressive stress-strain curves and numerical analysis for the transformation kinetics.

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation (소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상)

  • Kim, Gwanghun;Jeon, Junhyub;Seo, Namhyuk;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF