• 제목/요약/키워드: deformation history

검색결과 319건 처리시간 0.02초

Impact deformation of Feldspar in Achondrite: NWA 2727, NWA 3117, NWA 856 Meteorite

  • LEE, Jaeyong;FAGAN, Timothy J.
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.73.1-73.1
    • /
    • 2018
  • We investigated shock history of three achondrite meteorites: NWA 3117, a howardite from asteroid Vesta, NWA 2727, a breccia from the Moon, and NWA 856, a shergottite from Mars. Shock histories were evaluated from deformation of plagioclase feldspars. Feldspar grains were classified based on observations in cross-polarized light as undulatory, mosaic, mosaic-recrystallized or maskelynite. This sequence represents increasing deformation of original feldspar crystals. Undulatory crystals have wavy extinction, mosaic crystals have patchy extinction, and mosaic-recrystallized grains appear as if they were originally coarse-grained and have recrystallized to mosaics of small equant crystals. Maskelynite grains are isotropic, indicating transformation to glass. Based on feldspar deformation, the degrees of impact processing are NWA 856 > NWA 3117 > NWA 2727. The high deformation of NWA 856 is expected because this sample is from Mars, which is a large parent body and requires a powerful impact to accelerate a rock to escape velocity. In contrast, the parent body of NWA 3117 (Vesta) is smaller than that of NWA 2727 (the Moon), yet NWA 3117 appears more highly deformed than NWA 2727. One possible explanation is that NWA 2727 is from a relatively young part of the Moon, which has not been exposed to impacts as long as the surface of Vesta.

  • PDF

굴착기에서의 리퍼의 형상에 따른 구조적 내구성 연구 (A Study on Structural Durability due to the Configuration of Ripper at Excavator)

  • 강민제;조재웅
    • 한국융합학회논문지
    • /
    • 제5권2호
    • /
    • pp.13-18
    • /
    • 2014
  • 본 연구에서는 굴착기에서의 리퍼의 형상에 따른 구조 및 진동, 피로해석을 하였다. 2가지의 모델들 모두, 작업장치의 바디와 이어지는 축에서 최대 응력이 발생하였고 최대 변형량은 직접작업부에서 발생하였다. Model 1이 Model 2 보다 내구성면에서 구조적으로 더 안정적이라고 사료된다. 불규칙 피로 하중들 중에서는 하중의 변화가 극심한 'SAE bracket history'의 경우가 대체적으로 가장 불안정한 경향을 보이고 있고, 비교적 하중의 변화가 완만한 'Sample history'의 경우가 가장 안정함을 보이고 있다. 본 연구의 결과를 종합하여 굴착기에서의 리퍼의 설계에 응용한다면, 그 파손 방지 및 내구성을 검토하여 그 설계에 유용하게 활용될 것으로 사료된다.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

어퍼암의 구조적 안전성 해석에 대한 연구 (Study on Structural Safety Analysis of Upper Arm)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.

충청북도 제천시 봉화재 일대의 지질구조 (Geological structures in the Bonghwajae area Jecheon-si, Chungcheongbuk-do, Korea)

  • 정진우;강지훈
    • 암석학회지
    • /
    • 제23권2호
    • /
    • pp.105-117
    • /
    • 2014
  • 옥천변성대의 북동 선단부에 위치하는 충청북도 제천시 봉화재 지역은 옥천누층군과 조선누층군이 분포한다. 본 논문은 중첩 변형된 주요 암석 및 미구조의 기하학적 운동학적 특성과 선후관계로부터 봉화재 지역의 지질구조를 연구하였다. 광역엽리의 대부분은 S0 층리가 아닌 신장된 광물들의 정향배열에 의해 정의되는 S0-1의 복합엽리로 나타나고, 일부는 불용해성 불투명 광물과 벽개 라멜라의 정향배열로 정의되는 S0-1-2 복합엽리로 인지된다. 연구지역의 지질구조는 북북동-남남서 방향의 D1 압축작용, 동-서 방향의 D2 압축작용, 남-북 방향의 D3 압축작용 등 적어도 세 번의 변형단계를 거쳐 형성되었다. 조선누층군과 옥천누층군 구성지층의 대상 분포방향과 유사한 S0-1 복합엽리는 D2 변형 이전에 서북서 방향이었으나, D2 변형에 의해 S2 엽리와 평행한 남-북 방향으로 재배열되었고, D3 변형에 의해 현재와 같이 북서, 북동, 남-북 방향으로 재배열되었다. 변형단계별 구조적 특성과 변형작용사는 연구지역의 조선누층군과 옥천누층군이 북북서 방향으로 연장되는 부산지역 동부 영역과 매우 유사하고, 이들 연구결과는 옥천변성대 북동 선단부의 지구조 발달과정을 해석하는데 매우 유용하게 활용될 것으로 기대된다.

Nonlinear analysis of the influence of increments amounts and history load on soil response

  • Ivandic, Kreso;Soldo, Bozo
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.67-77
    • /
    • 2009
  • The soil response calculation is described, by which, threw the fictive path of stress, the stress-deformation diagrams are determined, considering the nonlinear soil behavior. The calculation are lead incrementally, by which is shown that in the presented soil model (modified Cam Clay), considering the influence of overconsolidated soil pressure OCR, the number of calculation steps may, but not necessarily, have a sufficient influence on the value of failure load and definite soil deformation. The simplicity and the practicalness of the procedure, the enables modeling the complex relations in soil.

Studies into a high performance composite connection for high-rise buildings

  • Lou, G.B.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.789-809
    • /
    • 2015
  • This paper presents experimental and numerical studies into the structural behavior of a high performance corbel type composite connection adopted in Raffles City of Hangzhou, China. Physical tests under both monotonic and quasi-static cyclic loads were conducted to investigate the load carrying capacities and deformation characteristics of this new type of composite connection. A variety of structural responses are examined in detail, including load-deformation characteristics, the development of sectional direct and shear strains, and the history of cumulative plastic deformation and energy. A three-dimensional finite element model built up with solid elements was also proposed for the verification against test results. The studies demonstrate the high rigidity, strength and rotation capacities of the corbel type composite connections, and give detailed structural understanding for engineering design and practice. Structural engineers are encouraged to adopt the proposed corbel type composite connections in mega high-rise buildings to achieve an economical and buildable and architectural friendly engineering solution.

P-Δ 효과에 의한 철골 라멘 하부층 변형집중현상 억제를 위한 SM570TMC 고강도강 혼용 사용 설계제안 (Proposal of the Structure Design using SM570TMC for Preventing Deformation Concentration by P-Δ Effect on Lower Story in Steel Ramen)

  • 김문정
    • 복합신소재구조학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-37
    • /
    • 2012
  • Under the huge seismic loads, there are too many risks about which high-rise buildings lost their lateral stiffness caused by plasticity on frame members. Because of earthquake is important cause to bring the collapes countinue to human's life, many reports examined these phenomenons in various angles. And some of them reported the high possibility about building collapse by deformation concentrations under huge earthquakes. For preventing these phenomenons, researchers suggest some items-such as adding damping devices or strengthen their ductility or stifness. This report suggests choose the method of strengthen building stiffness and suggests the alternative designs using high strength steel-SM570TMC, and provides the results of time-history analysis about the alternative designs for investigation.

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제3권5호
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model

  • Li, Chao;Zoua, Jin-Feng
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.141-151
    • /
    • 2019
  • A novel theoretical solution is presented for created (zero initial radius) cavity expansion problem based on CamClay model and considers the effect of initial anisotropic in-situ stress and drained conditions. Here the strain of this theoretical solution is small deformation in elastic region and large deformation in plastic region. The works for cylindrical and spherical cavities expanding in drained condition from zero initial radius are investigated. Most of the conventional solutions were based on the isotropic and undrained condition, however, the initial stress state of natural soil mass is anisotropy by soil deposition history, and drained cavity expansion calculation is closer to actual engineering in permeable soil mass. Finally, the parametric study is presented in order to the engineering significance of this work.