• Title/Summary/Keyword: deformation height

Search Result 394, Processing Time 0.027 seconds

Surface Stress Profiles at the Contact Boundary in Backward Extrusion Processes for Various Punch Shapes (후방압출에서 펀치형상에 따른 접촉경계면의 표면부하상태)

  • Noh, J.H.;Kim, M.T.;Vishara, R.J.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.565-571
    • /
    • 2009
  • This paper is concerned with the analysis on the surface stress profiles of perfectly plastic material in backward extrusion process. Due to heavy surface expansion appeared usually in the backward extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the analyses have focused to reveal the surface conditions at the contact boundary for various punch shapes in terms of surface expansion, contact pressure, and relative movement between punch and workpiece which consists of sliding velocity and distance, respectively. Punch geometries adopted in the analysis include concave, hemispherical, pointed and ICFG recommended shapes. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward extrusion process under different punch geometries. The simulation results are summarized in terms of surface expansion, contact pressure, sliding velocity and sliding distance at different reduction in height, deformation patterns, and load-stroke relationship, respectively.

Behavior of 2-Arch Tunnel with Stiffness of Grouting (그라우팅 강성도에 따른 2-Arch 터널의 거동)

  • Lee, Jong-Min;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.260-266
    • /
    • 2010
  • In this study, wish to analyze effect that affect on each tunnel (right and left tunnel) according as proceeding of leading tunnel (right tunnel), following tunnel (left tunnel) and pilot tunnel excavation through behavior of tunnel and surrounding base by model tests. And stress-transfer mechanism that occurs from in-situ loosing area and arching effect by difference of stiffness ratio and overburden heights were verified experimentally. The model tests were carried out by varying the stiffness of reinforced area and overburden height, measured deformation of tunnel and displacement of surrounding base. The model tests followed exactly the real 2-Arch tunnel construction stages.

Experimental study on the Behavior of RC Bridge Piers with Various Aspect Ratio (철근 콘크리트 교각의 형상비에 따른 거동 특성에 관한 실험적 연구)

  • Lee, Dae-Hyoung;Kim, Hoon;Kim, Yon-Gon;Chung, Young-Soo;Lee, Jae-Hoon;Cho, Jun-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.47-52
    • /
    • 2001
  • Short reinforced concrete bridge piers are particularly susceptible to shear failure as a consequence of the high shear/moment ratio and conservatism in the flexural strength design of existing RC bridge pier, which were constructed before 1992. In addition, shear failure is brittle and involves rapid strength degradation. Inelastic shear deformation is thus unsuitable fur ductile seismic response. It is, however, believed that there are not many experimental research works fur shear failure of the existing RC bridge pier in Korean peninsula subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular RC bridge piers by the quasi-static test. Existing RC bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of aspect ratio (column height-diameter ratio). Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteric curve, envelope curve etc.

  • PDF

Quasi-Static Test for Seismic Performance of Reinforced Concrete Bridge Piers with Lap Splice (준정적실험에 의한 실물 원형교각의 내진성능평가를 위한 실험적 연구)

  • Kim, Hoon;Chung, Young-Soo;Lee, Jae-Hoon;Choi, Jin-Ho;Cho, Jun-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.941-946
    • /
    • 2002
  • Short reinforced concrete bridge piers are particularly susceptible to shear failure as a consequence of the high shear/moment ratio and conservatism in the flexural strength design of existing RC bridge pier, which were constructed before 1992. In addition, shear failure is brittle and involves rapid strength degradation. Inelastic shear deformation is thus unsuitable for ductile seismic response. It is, however, believed that there are not many experimental research works for shear failure of the existing RC bridge pier in Korean peninsula subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular RC bridge piers by the quasi-static test. Existing RC bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of aspect ratio (column height-diameter ratio). Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteric curve, envelope curve etc.

  • PDF

Impact Bending Test Simulations of FH32 High-strength Steel for Arctic Marine Structures

  • Choung, Joonmo;Han, Donghwa;Noh, Myung-Hyun;Lee, Jae-Yik;Shim, Sanghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • This paper provides theoretical and experimental results to verify the crashworthiness of FH32 high-strength steel for arctic marine structures against ice impact. Assuming that side-shell structures of the Korean arctic research vessel, ARAON, with ice-notation PL10, collide with sheet ice, one-third-scale test specimens with a single transverse frame are manufactured. Impact-bending tests were conducted using a rigid steel striker that mimics sheet ice. Drop height was calculated by considering the speed at which sheet ice is rammed. Prior to impact-bending tests, tensile coupon tests were conducted at various temperatures. The impact-bending tests were carried out using test specimens fully fixed to the inside bottom frame of a cold chamber. The drop-weight velocity and test specimen deformation speed were measured using a high-speed camera and digital image correlation analysis (DICA). Numerical simulations were carried out under the same conditions as the impact-bending tests. The simulation results were in agreement with the test results, and strain rate was a key factor for the accuracy of numerical simulations.

이상파랑하에서의 해빈변화특성 해석

  • Kim, Hui-Jae;An, Hyo-Jae;Kim, Gang-Min;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.241-243
    • /
    • 2014
  • Recently, as the coastal erosion impacts greats to both social and economical aspects, each local government is trying to setup its countermeasures. However, it is necessary to survey the change of sediment movement characteristics and investigate the continuous environment change by long-term monitoring after building prevention constructions. In this study, predictions on wave deformation and sediment movement deduced through the numerical modeling are made, based on the ordinary and extraordinary wave through seasonal superiority wave direction, height, period and long-term wave characteristics on the eroded beach of central West sea.

  • PDF

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

Innovative approach to determine the minimum wall thickness of flexible buried pipes

  • Alzabeebee, Saif;Chapman, David N.;Faramarzi, Asaad
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.755-767
    • /
    • 2018
  • This paper uses a finite element based approach to provide a comprehensive understanding to the behaviour and the design performance of buried uPVC pipes with different diameters. It also investigates pipes with good and poor haunch support and proposes minimum safe wall thicknesses for these pipes. The results for pipes with good haunch support showed that the maximum pipe wall stress and deformation increase as the diameter increased. The results for pipes with poor haunch support showed an increase in the dependency of the developed vertical displacement on the haunch support as the diameter or the backfill height increased. Additionally, poor haunch support was found to increase the soil pressure, with the effect increasing as the diameter increased. The design of uPVC pipes for both poor and good haunch support was found to be governed by critical buckling. A key outcome is a new design chart for the minimum wall thickness, which enables the robust and economic design of buried uPVC pipes. Importantly, the methodology adopted in this study can also be applied to the design of flexible pipes manufactured from other materials, buried under different conditions and subjected to different loading arrangements.

Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems (거친 면 접촉의 정적 마찰계수 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.