• Title/Summary/Keyword: deformation energy

Search Result 1,625, Processing Time 0.03 seconds

Study on the Spinning Processes Combined with Shear and Shrinking Deformation (전단 및 교축변형이 조합된 복합스피닝 공정에 관한 연구)

  • 이항수;강정식
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.507-519
    • /
    • 1999
  • An approach using the energy method has veen proposed for the analysis of cone spinning having the complicated deformation modes mixed by shear and normal deformation. In the proposed method, the corresponding solution is found through optimization of the total energy dissipation with respect to the parameters assumed by the velocity field defined as the variation of the length in longitudinal direction. The sheet blank is divided into three layers to consider the bending effect and the energy dissipated by shear deformation is superposed to the energy consumption due to normal deformation related with the shrinking deformation is superposed to the energy consumption due to normal deformation related with the shrinking deformation of axi-symmetric sheet element for the evaluation of total deformation energy. In order to check the validity of the proposed method, the complex spinning for making the conical cup is analyzed and the computed results are compared with the experimental results. In comparison of the computed results with existing experimental results,, the good agreement is obtained for the variation of outer radius and the distribution of thickness, and it has thus been shown that the present approach is applicable to the analysis of complex spinning.

  • PDF

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

Improved deformation energy for enhancing the visual quality of planar shape deformation (평면 형상 변형의 시각적 품질 향상을 위한 개선된 형상 변형 에너지)

  • Yoo, Kwangseok;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • We present improved deformation energy to enhance the visual quality of a shape deformation technique, where we preserve the local structure of an input planar shape. The deformation energy, in general, consists of several constraints such as Laplacian coordinate constraint to preserve the quality of deformed silhouette edges, mean value coordinates and edge length constraints to preserve the quality of deformed internal shape, and user-specified position constraints to control the shape deformation. When the positions of user-specified vertices change, shape deformation techniques compute the positions of the other vertices by means of nonlinear least squares optimization to minimize the deformation energy. When a user-specified vertex changes its position rapidly, it is frequently observed that the visual quality of the deformed shape decrease rapidly, which is mainly caused by unnecessary enlargement of the Laplacian vectors and unnecessary change of the edge directions along the boundary of the shape. In this paper, we propose improved deformation energy by prohibiting the Laplacian and edge length constraints from changing unnecessarily. The proposed deformation energy incorporated with well-known optimization technique can enhance the visual quality of shape deformation along the silhouette and within the interior of the planar shape while sacrificing only a little execution time.

Yield line mechanism analysis of cold-formed channel sections with edge stiffeners under bending

  • Maduliat, S.;Bambach, M.R.;Zhao, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.883-897
    • /
    • 2012
  • Cold-formed channel sections are used in a variety of applications in which they are required to absorb deformation energy. This paper investigates the collapse behaviour and energy absorption capability of cold-formed steel channels with flange edge stiffeners under large deformation major-axis bending. The Yield Line Mechanism technique is applied using the energy method, and based upon measured spatial plastic collapse mechanisms from experiments. Analytical solutions for the collapse curve and in-plane rotation capacity are developed, and used to model the large deformation behaviour and energy absorption. The analytical results are shown to compare well with experimental values. Due to the complexities of the yield line model of the collapse mechanism, a simplified procedure to calculate the energy absorbed by channel sections under large bending deformation is developed and also shown to compare well with the experiments.

A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact (저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구)

  • 손세원;이두성;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF

Effect of Deformation Energy on the Indentation Induced Etch Hillock (변형 에너지가 나노압입 유기 Hillock 현상에 미치는 영향)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.225-228
    • /
    • 2005
  • The purpose of this study is to investigate effects of the plastic/elastic deformation energy on wet etching characterization on the surface of material by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex 7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wt\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (normal load, loading rate) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies.

  • PDF

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Plastic mechanism analysis of vehicle roof frames consisting of spot-welded steel hat sections

  • Bambach, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1085-1098
    • /
    • 2014
  • Plastic mechanism analysis of structures subjected to large deformation has long been used in order to determine collapse mechanisms of steel structures, and the energy absorbed in plastic deformation during such collapses. In this paper the technique is applied to vehicle roof structures that undergo large plastic deformation as a result of rollover crashes. The components of such roof structures are typically steel spot-welded hat-type sections. Ten different deformation mechanisms are defined from investigations of real-world rollover crashes, and an analytical technique to determine the plastic collapse load and energy absorption of such mechanisms is determined. The procedure is presented in a generic manner, such that it may be applied to any vehicle structure undergoing a rollover induced collapse. The procedure is applied to an exemplar vehicle, in order to demonstrate its application in determining the energy absorbed in the deformation of the identified collapse mechanisms. The procedure will be useful to forensic crash reconstructionists, in order to accurately determine the initial travel velocity of a vehicle that has undergone a rollover and for which the post-crash vehicle deformation is known. It may also be used to perform analytical studies of the collapse resistance of vehicle roof structures for optimisation purposes, which is also demonstrated with an analysis of the effect of varying the geometric and material properties of the roof structure components of the exemplar vehicle.

Prediction of the Performance of a Deformation Tube for Railway Cars using the Slab Method (초등해법을 이용한 철도차량 변형튜브 성능 예측에 관한 연구)

  • Kim, J.M.;Lee, J.K.;Kim, K.N.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.124-129
    • /
    • 2016
  • Recently, global railway car makers are competing desperately in developing high-speed railway vehicles. Ensuring passenger safety during a crash is essential. The design and the manufacturing of energy absorbing components are becoming more and more important. A deformation tube is a typical passive energy absorbing component for railway cars. In the current study the slab method was used to predict the energy absorbing capability of a deformation tube during the early design stage. The usefulness of the prediction method is verified through the comparisons between the results of FE simulations and those of the prediction method.

Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters

  • Kim, Changho;Ko, Youngsu;Kim, Taemin;Yoo, Chan-Sei;Choi, BeomJin;Han, Seung Ho;Jang, YongHo;Kim, Youngho;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2018
  • Increasing interest in prognostics and health management has heightened the need for wireless sensor networks (WSN) with efficient power sources. Piezoelectric energy harvesters using Pb(Zr,Ti)O3 (PZT) are one of the candidate power sources for WSNs as they efficiently convert mechanical vibration energy into electrical energy. These types of devices are resonated at a specific frequency, which has a significant impact on the amount of energy harvested, by external vibration. Hence, precise prediction of mechanical deformation including modal analysis of piezoelectric devices is crucial for estimating the energy generated under specific conditions. In this study, an experimental vibrational system capable of controlling a wide range of frequencies and accelerations was designed to generate mechanical vibration for piezoelectric energy harvesters. In conjunction with MATLAB, the system automatically finds the resonance frequency of harvesters. A small accelerometer and non-contact laser displacement sensor are employed to investigate the mechanical deformation of harvesters. Mechanical deformation under various frequencies and accelerations were investigated and analyzed based on data from two types of sensors. The results verify that the proposed system can be employed to carry out vibration experiments for piezoelectric harvesters and measurement of their mechanical deformation.