• Title/Summary/Keyword: deformation dependent

Search Result 640, Processing Time 0.026 seconds

On the thermal buckling response of FG Beams using a logarithmic HSDT and Ritz method

  • Kadda Bouhadjeb;Abdelhakim Kaci;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohammed A. Al-Osta;S.R. Mahmoud;Farouk Yahia Addou
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.453-465
    • /
    • 2024
  • This paper presents a logarithmic shear deformation theory to study the thermal buckling response of power-law FG one-dimensional structures in thermal conditions with different boundary conditions. It is assumed that the functionally graded material and thermal properties are supposed to vary smoothly according to a contentious function across the vertical direction of the beams. A P-FG type function is employed to describe the volume fraction of material and thermal properties of the graded (1D) beam. The Ritz model is employed to solve the thermal buckling problems in immovable boundary conditions. The outcomes of the stability analysis of FG beams with temperature-dependent and independent properties are presented. The effects of the thermal loading are considered with three forms of rising: nonlinear, linear and uniform. Numerical results are obtained employing the present logarithmic theory and are verified by comparisons with the other models to check the accuracy of the developed theory. A parametric study was conducted to investigate the effects of various parameters on the critical thermal stability of P-FG beams. These parameters included support type, temperature fields, material distributions, side-to-thickness ratios, and temperature dependency.

Characteristics of Creep Deformation Behavior of Granite under Uniaxial Compression (단축압축하중을 받는 대전 화강암의 크립 변형거동 특성에 관한 연구)

  • 홍지수;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.69-77
    • /
    • 2004
  • Investigation of the time-dependent behavior of rock and the associated mechanisms are of key interest in long-term stability analysis of many engineering applications. In this study, creep tests were performed on Daejeon granite samples of 25.4mm diameter under uniaxial compression at varying stress levels. The effect of moisture was investigated by testing both air-dried and fully water-saturated samples. The creep behavior of Daejeon granite exhibited three distinctive stages of primary, secondary and tertiary creep. The ultimate strength of granite under a constant stress decreased considerably with time. Saturation and immersion of the test specimen in water markedly increased the total creep strain as well as the secondary creep rate. The experimental creep curves are fitted to Burger's model as well as two other empirical models suggested by previous researchers. A number of the parameters determined for each model are dependent on stress and influenced by the presence of water. Based on the experimental results, an empirical relation between the applied stress and the time-dependent strain is established separately for each air-dried and fully water-saturated Daejeon granite.

Failure Time Prediction by Nonlinear Least Square Method with Deformation Data (계측 자료의 비선형최소자승법을 이용한 파괴시간 예측)

  • Yoon, Yong-Kyun;Kim, Byoung-Chul;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.558-566
    • /
    • 2009
  • Time-dependent behavior is a basic mechanical property of rocks. Predicting the failure time of rock structures by analyzing the time-dependent characteristic is important and problematic. It is tried to predict the failure time of tunnel, slope & laboratory creep test specimen from measured displacement(or strain) and rate with relationship suggested by Voight($\ddot{\Omega}=A\dot{\Omega}^\alpha$, where $\Omega$ is a measurable quantity such as strain & displacement and A & $\alpha$ are constants). A & $\alpha$ are estimated through applying the nonlinear least square method to the single and double integrated Voight's equations and utilized to predict the failure time. Predicted failure time is in accordance with real one except minor error. Linear inverse rate method applied to creep strain and rate yields a poor linear correlation of data and precision of predicted failure time is not better than methods using strain and rate.

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

Experimental investigation of long-term characteristics of greenschist

  • Zhang, Qing-Zhao;Shen, Ming-Rong;Ding, Wen-Qi;Jang, Hyun-Sic;Jang, Bo-An
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.531-552
    • /
    • 2016
  • The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

Temperature Distribution and It's Contribution to Self-equilibrium Thermal Stress in Bridge (교량 단면 내 온도분포에 따른 자체평형 열응력 해석)

  • Kwak, Hyo-Gyoung;Kwon, Se-Hyung;Ha, Sang-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.531-542
    • /
    • 2011
  • The time-dependent temperature distribution across the section in bridges is determined on the basis of the three-dimensional finite element analyses and numerical time integration in this study. The material properties which change with time and thermal stress of concrete are taken into account to effectively trace the early-age structural responses. Since the temperature distribution is nonlinear and depends upon many material constants such as the thermal conductivity, specific heat, hydration heat of concrete, heat transfer coefficients and solar radiation, three representative influencing factors of the construction season, wind velocity and bridge pavement are considered at the parametric studies. The validity of the introduced numerical model is established by comparing the analytical predictions with results from previous analytical studies. On the basis of parametric studies for four different bridge sections, it is found that the creep deformation in concrete bridges must be considered to reach more reasonable design results and the temperature distribution proposed in the Korean bridge design specification need to be improved.

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates (열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구)

  • Park, E.T.;Lee, B.E.;Kang, D.S.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.

Analysis of Motion of Batoid Fins for Thrust Generation by Using Fluid-Structure Interaction Method (추진력 생성을 위한 가오리 날개 짓의 유체-구조연성 수치해석)

  • Kwon, Dong-Hyun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1575-1580
    • /
    • 2010
  • Recently, the development of bio-mimetic underwater vehicles that can emulate the characteristic movements of marine fish and mammals has attracted considerable attention. In this study, the motion of the batoid (i.e., cownose ray) fin that facilitates excellent cruising and maneuvering during underwater movement has been studied. The velocity achieved and distance covered with each fin movement are numerically studied. A fluid-structure interaction method is used to perform 3D time-dependent numerical analysis, wherein an adaptive mesh is employed to account for the large deformation of a fin interacting with a fluid. The results of a preliminary study show that the thrust of a ray fin is highly dependent on the frequency. Further, once the fin amplitude required for generating a given thrust is evaluated for the conditions experienced by an actual ray, the frequency and amplitude values for achieving better thrust are determined.

Analytical System Development for Reinforced Tall Buildings with Construction Sequence (시공단계에 따른 철근콘크리트 고층건물의 해석시스템 개발)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.410-417
    • /
    • 2013
  • Long-term behavior analysis considering construction sequence should be performed in the design and the actual construction of reinforced tall buildings. Most of the analytical studies on this subject, however, has not been applied directly to the structural design and the construction caused by the simple approach. As the axial force redistribution of shores and columns is time-dependent, the actual construction sequence with the placement of concrete, form removal, reshoring, shore removal, and the additional load application is very important. Object-oriented analysis program considering construction sequence, especially time-dependent deformation in early days, is developed. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.