• Title/Summary/Keyword: deformation dependent

Search Result 640, Processing Time 0.035 seconds

Numerical Analysis to Predict the Time-dependent Behavior of Automotive Seat Foam (자동차용 시트 폼의 시간 의존적 거동 예측을 위한 수치해석)

  • Kang, Gun;Oh, Jeong Seok;Choi, Kwon Yong;Kim, Dae-Young;Kim, Heon Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-112
    • /
    • 2014
  • Generally, numerical approaches of evaluation for vehicle seat comfort have been studied without considering time-dependent characteristics and the only seating moment have been considered in seat design. However, the comfort not only at the seating moment but also in the long-term should be evaluated because the passengers are sitting repeatedly on the seat to drive the vehicle for hours. So, the aim of this paper is to carry out a quantitative evaluation of the time-dependent mechanical characteristics of seat foams and to suggest a process for predicting the viscoelastic deformation of seat foam in response to long-term driving. To characterize the seat materials, uniaxial compression and tension tests were carried out for the seat foam and stress relaxation tests were performed for evaluating the viscoelastic behavior of the seat foam. A unit solid element model was used to verify the reliability of the material model with respect to the compression behavior of the seat foam. It is not straightforward to evaluate the time-dependent compression of foams using the explicit solver because the viscoelastic material model is limited. To use the explicit solver, the material model must be modified using stress-degradation data. Normalized stress relaxation moduli were added to the stress-strain curves obtained under static conditions to achieve a time-dependent set of stress-strain relations that were compatible with the implicit solver. There was good agreement between the analysis results and experimental data.

Relative Density and Stress-Dependent Failure Criteria of Marine Silty Sand Subjected to Cyclic Loading (반복하중을 받는 해양실트질 모래의 상대밀도에 따른 응력기반 파괴기준)

  • Ko, Min Jae;Son, Su Won;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • An experimental study has been conducted by using the Cyclic Direct Simple Shear apparatus to evaluate the influence of average and cyclic shear stresses on the undrained shear failure behavior of marine silty sand considering various relative densities. The obtained results show that despite using different relative densities, similar trends were gained in the cyclic shear deformation. Moreover, the cyclic shear deformation is affected mainly by the average and cyclic shear stresses. The number of cyclic loads for failure is significantly affected by the cyclic shear stress ratio and relative density, and is less affected by the average shear stress ratio. The proposed three-dimensional stress-dependent failure contour can be used effectively to assess the soil shear strength considering various relative densities in the design of foundation used for offshore structures.

Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding (롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성)

  • Hwang, B.K.;Lee, K.S.;Hong, S.E.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

Effects of GSI and Joint Orientation on the Change of Hydraulic Conductivity (GSI 및 절리의 방향이 수리전도도 변화에 미치는 영향)

  • Yoon, Yong-Kyun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, a newly modified 3-dimensional strain-dependent hydraulic conductivity modification relation which incorporates the influences of normal deformation and shear dilation is suggested. Since rock mass is simulated as a orthogonally jointed medium, an anisotropic hydraulic conductivity field can be evaluated using that relation. The empirical relationship on the basis of GSI and disturbance factor has been used to estimate the value of a modulus reduction ratio (ratio of rock mass deformation modulus to rock matrix elastic modulus). Principal hydraulic conductivity directions is not generally coincident with the global coordinate due to the inclining of joint and the influence of joint inclination is evaluated under strain rotation. Result shows that change of hydraulic conductivity does decreases with the increase of GSI and disturbance factor has much effects on the hydraulic conductivity of rock mass getting GSI value above 50. It is found that the inclination of joint impacts on the variation of hydraulic conductivity.

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

A Fundamental Study on the Criteria of Basic Parameters for Planning Rock Grouting (암반 그라우팅 주요 계획인자의 기준값에 관한 기초연구)

  • Kim, Jongmin;Lee, Eung Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.15-27
    • /
    • 2022
  • Despite the increasing applicability of rock grouting as a method for strengthening or disaster prevention by improving the stability of ground, criteria for planning parameters which can be used as minimum guideline are required since the current practice is mainly dependent on experience. In this study, the fundamental criteria for important parameters of rock grouting in terms of injection conditions such as water-cement ratio, injecting pressure, cement take and resulting effects such as deformation modulus and permeability are proposed. Those criteria are the results of analyses of a series of hydraulic fracturing tests and Lugeon tests, in-situ grouting tests at 17 sites in Korea and other countries, combined with the literature analyses of standards and previous research. In addition, the method for modifying proposed criteria according to water-cement ratio is also addressed since that in Korean practice is too high and therefore, should be adjusted to satisfy the conditions of balanced stable grouting. The results of this study can be used as a fundamental reference for more refined research in the future although they are still somewhat experience-dependent.

Stress Path Dependent Deformation Characteristics of A Normally Consolidated Saturated Cohesive Soil (정규압밀 포화점성토의 응력경로에 따른 변형특성)

  • 권오엽;정인준
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.45-56
    • /
    • 1989
  • The influence of stress path on the deformation characteristics of clay has been studied through a series of stress-path controlled triaxial tests on artificially sedimented and normally con- solidated Kaolinite. It has been found that there exists a critical stress increment ratio, Kc, in which stress·strain characteristics possesses a linear relationships and beyond Kc, strain hardening. A modified hyperbolic constitutive model for the strain hardening behavior has been formulated based on the Drnevich's hyperbolic function. And, a method of settlement analyses has been Proposed wherein the effect of stress path during consolidation is taken into account.

  • PDF

Analysis of Damaged Material Response Using Unified Viscoplastic Constitutive Equations (통합형 점소성구성식을 이용한 손상재료거동해석)

  • Ha Sang Yul;Kim Ki Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.253-261
    • /
    • 2005
  • In decades, a substantial body of work on a unified viscoplastic model which considers the mechanism of plastic deformation and creep deformation has developed. The systematic scheme for numerical analysis of unified model is necessary because the dominant failure mechanism is the defect growth and coalescence in materials. In the present study, the unified viscoplastic model for materials with defects suggested by Suquet and Michel was employed for numerical analysis. The constitutive equations are integrated based on the generalized mid-point rule and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). To evaluate the validity of the developed UMAT code and the assessment of the adopted viscoplastic model, the results obtained from the UMAT code was compared with the numerical reference solution and experimental data. The unit cell analysis also has been investigated to study the effect of strain rate, temperature, stress triaxiality and initial defect volume fraction on the growth and coalescence of the defect.

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.