• Title/Summary/Keyword: deformation, characteristics

Search Result 2,517, Processing Time 0.023 seconds

Use of vibration characteristics to predict the axial deformation of columns

  • Moragaspitiya, H.N. Praveen;Thambiratnam, David P.;Perera, Nimal J.;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.73-88
    • /
    • 2014
  • Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.

Analysis on interaction of Ground and support using Ground response curve for tunnel design (지반응답곡선을 이용한 지반과 지보재의 상호작용 분석)

  • Ahn, Tae-Hun;Ahn, Sung-Hak;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1059-1064
    • /
    • 2002
  • The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The load-deformation characteristics of ground and support are derived by the interaction between ground and support. The interaction between ground and support is qualitatively illustrated by a ground response curve. The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The interaction between ground and support is qualitatively illustrated by a ground response curve. The convergence-confinement method don't need the basic assumptions for a mathematical model. Also This is applicable to general tunnel. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

  • PDF

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field (고온 고압 유동장에서 햅탄 액적의 기화 특성)

  • Ko, Jung-Bin;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios (강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성)

  • Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

Influence characteristics of isolation piles on deformation of existing shallow foundation buildings under deep excavation

  • Liu, Xinrong;Liu, Peng;Zhou, Xiaohan;Wang, Linfeng;Zhong, Zuliang;Lou, Xihui;Chen, Tao;Zhang, Jilu
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Urban deep excavation will affect greatly on the deformation of adjacent existing buildings, especially those with shallow foundations. Isolation piles has been widely used in engineering to control the deformation of buildings adjacent to the excavation, but its applicability is still controversial. Based on a typical engineering, numerical calculation models were established and verified through monitoring data to study the influence characteristics of isolation piles on the deformation of existing shallow foundation buildings. Results reveal that adjacent buildings will increase building settlement δv and the deformation of diaphragm walls δh, while the isolation piles can effectively decrease these. The surface settlement curve is changed from "groove" type to "double groove" type. Sufficiently long isolation pile can effectively decrease δv, while short isolation piles will lead to a negative effect. When the building is within the range of the maximum settlement location P, maximum building rotation θm will increase with the pile length L and the relative position between isolation pile and building d/D increase (d is the distance between piles and diaphragm walls, D is the distance between buildings and diaphragm walls), instead, θm will decrease for buildings outside the location P, and the optimum was obtained when d/D=0.7.

The effect of compressive strain rate on biaxial compressive deformation characteristics of Al circular pipe (AI 원형 관의 2축 압축 변형특성에 미치는 압축속도의 영향)

  • Won, S.T.;Jung, H.J.;Ahn, H.J.;Cho, H.H.;Yoo, C.K.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.23-26
    • /
    • 2008
  • In order to examine the deformation characteristics of Al circular pipe underthe biaxial compression, the horizontal biaxial compression die for the experiment was manufactured. From this, in the various compressive strain rate (1 mm/min. ${\sim}$ 400 mm/min.)conditions, the circular pipes, which were made by Al materials, were investigated based on the properties change of cross section area, punch load and deformation behavior. The tensile and compressive strains were evaluated from micro Vickers hardness tester. From these results, the punch load and deformation characteristic of Al circular pipes were highly changed in the compressive strain rate about 200 mm/min. The Al circular pipes had the tendency that the punch load decreased with increasing the compressive strain rate. In addition, following as the change of the shape and position of neutral axis due to the deformation proceeding of the circular pipe, the special point of the internal circular pipe at maximum load showed the maximum deformation strain and the maximum measured hardness value. The CAE (computer aided engineering) simulation using Deform-2D program was performed on the circular pipe in order to know and verify the exact compressive deformation behavior. From these results, the experimentally measured results were reasonably in good agreement with the simulation results.

  • PDF

Study on the Deformation Characteristics of AZ31B Sheets in V-bending and Effect of Bottoming Process (마그네슘 합금 판재의 온간 V-굽힘에서 소재의 변형 및 보토밍 공정의 효과 분석)

  • Kim, H.W.;Yu, J.H.;Lee, C.W.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.139-144
    • /
    • 2018
  • Many studies have been conducted on the process of forming magnesium alloy sheets to reduce the body weights of vehicles. Magnesium has a lower specific gravity than steel and also has a higher specific strength. Mg alloy sheets have low formability and a lot of springback due to their limited ductility and low young's modulus. As the temperature increases, the yield strength of the material decreases. Warm forming increases the formability and minimizes the springback of a material by heating it and the die to reduce the required load at forming. In this study, the temperature of the AZ31B sheet was controlled in order to reduce springback and increase formability. However, as the temperature increased, the deformation characteristics of the material changed and the radius of curvature of the material increased. The load and springback amount required for forming were analyzed according to the temperature and the bottoming force in the bending deformation.

Deformation characteristics and stability analysis of semi-covered deep excavations with existing buildings

  • Linfeng Wang;Xiaohan Zhou;Tao Chen;Xinrong Liu;Peng Liu;Shaoming Wu;Feng Chen;Bin Xu
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.87-102
    • /
    • 2023
  • The cover plate and the building loads often make the semi-covered deep excavations with existing buildings bearing asymmetric load, presenting different deformation characteristics with normal excavations, which is not absolutely clear in current studies. Based on a typical engineering, the building storeys, the basement storeys, the pile length, the existence of the cover plate (CP) and the depth of the diaphragm walls (DW) were selected as variables, and 44 groups of simulation were designed to study the influence of existing buildings and the semi-covered supporting system on the deformation of the excavations. The results showed that the maximum lateral displacement of DW, δhm, and the depth of δhm, Hm, are affected seriously by the building storeys and the basement storeys. Asymmetric structures and loading lead to certain lateral displacement of DW at the beginning of excavation, resulting in different relationships between δhm and excavation depth, H. The maximum surface settlement outside the pit, δvm, increases significantly and the location, dm, moves away from the pit with the building storeys increases. δvm has a quadratic correlation with H due to the existing buildings. CP and building load will affect the style of the lateral displacement curve of DW seriously in different aspects.

A Study on the Deformation Optimization of a Plastic Bezel Assembled on the Steering Wheel of an Automobiles (자동차 스티어링 휠에 조립되는 플라스틱 베젤의 변형 최적화에 관한 연구)

  • Han, Seong-Ryoel
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.105-112
    • /
    • 2017
  • In this study, plastics were deformed after molding due to the characteristics of the material. The Taguchi experimental design method was utilized to find the molding conditions that minimized deformation of the plastic bezel to be assembled in an automotive steering wheel. The injection molding conditions applied to the experimental design method are the melt temperature, cavity plate coolant temperature, core plate coolant temperature, and cooling time. Each condition was divided into five levels, and a total of 25 experiments were planned. However, instead of performing 25 actual molding experiments, the injection molding analysis was performed using the Moldflow program, and the deformation values for each molding analysis were obtained. The optimal molding conditions were obtained from these deformation values. The actual injection molding experiment using optimal molding conditions was compared with the deformation amount of the current molded product. The deformation was measured using a precise 3D scanner. The deformation amount of the molded product under optimal molding conditions was 16.1% lower than the deformation amount of the current molded product.