• Title/Summary/Keyword: deflection theory

검색결과 427건 처리시간 0.021초

선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구 (A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads)

  • 백점기;정장영;백영민
    • 대한조선학회논문집
    • /
    • 제36권2호
    • /
    • pp.77-93
    • /
    • 1999
  • 본 연구에서는 충격횡압력을 받는 선체 판부재의 붕괴강도 특성을 분석하고 충격하중 효과를 고려한 간이 구조설계식을 제시하고자 한다. 충격횡압력하에 판부재의 붕괴거동을 분석하기 위해 기존의 실험결과와 더불어 범용 비선형 유한요소해석 프로그램인 STARDYNE을 이용하였다. 이론적 방법으로는 먼저 강소성이론을 이용하여 정적 횡압력을 받는 판부재에 대한 붕괴강도식을 도출하였다. 또한, 변형률속도 효과를 고려하여 충격 횡압력 문제에도 적용하였다. 실제 판부재에 적용 예로써 충격횡압력을 받는 강판부재와 알루미늄합금 보강판부재에 대한 붕괴거동을 분석하였다.

  • PDF

탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석 (Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush)

  • 정준모;최익흥
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

단순지지 변화곡선 길이 보의 정확탄성곡선 (Elastica of Simple Variable-Arc-Length Beams)

  • 이병구;박성근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.177-184
    • /
    • 1997
  • 이 논문은 한개의 집중하중을 받는 단순지지 변화곡선길이 보에 관한 연구이다. Bernoulli-Euler 보 이론에 의하여 정확탄성곡선을 지배하는 미분방정식을 유도하고 이를 수치해석하여 정확탄성곡선의 거동값들을 예측하였다. 미분방정식을 적분하기 위하여 Runge-Kutta method를 이용하고, 단부의 회전각을 산출하기 위하여 Regula-Falsi method를 이용하였다. 본 연구에서의 수치해석 결과들은 문헌값들과 매우 잘 일치하여 본 연구방법의 타당성을 입증하였다. 수치해석의 결과로 정확탄성곡선의 거동값과 하중사이의 관계 및 한계거동값과 하중위치변수 사이의 관계를 각각 그림에 나타내었다. 수치해석의 결과를 분석하여 변화곡선길이 보에서 발생가능한 최대 단부회전각, 최대 처짐 및 최대 휨모멘트를 산정하였다.

  • PDF

체질별(體質別) 식품(食品)과 약(藥) (Foods and Drugs Classified by Constitution)

  • 왕명자
    • 동서간호학연구지
    • /
    • 제2권1호
    • /
    • pp.62-82
    • /
    • 1997
  • If we eat long time foods that don't suit our constitution, health is broken and we take a disease. Therefore, care of foods and taking medicine by constitutional notion have a object that is normal control of constitution. It is attained when we maintain an adequate balance of Jang and Bu(臟腑) organs functional deflection. Theory of SaSang constitution by Lee-Jae Ma provides us a proper base of theory. But, later foods and drugs classified by constitution, that is suggestied by many scholars, is some different. Therefore, it is doubtful whether choice of foods and drugs suitable to constitution is right. If we use foods and drugs suitable to constitution exactly, we can decrease a side effect arisen from unsuitableness. On this, I study by literatures in order to provide foundational data. Lee-Jae Ma classified four species constitution, I compared twelve literatures by constitution, classified profit and harmful foods, and arranged and classify drugs that literature writer suggests in common. On base of this study, I suggest that foods and drugs classified by constitution is as follows. 1. Lee-Jae Ma made SaSang constitution medicine, but didn't suggestied use of foods, therefore, commoness of foods constitutional classification must be arranged. 2. Also commoness of drugs constitutional classification must be arranged. 3. Other literatures must be compared and analyzed except those of this study, because I didn't analyze many SaSang literatures.

  • PDF

근적외선 분광 분석을 위한 음향광학변조필터의 설계 및 교정 (Design and Calibration of Acousto-Optic Tunable Filter(AOTF) for Near Infrared Spectral Analysis)

  • 유장우;김대석;곽윤근;김수현;이윤우;황인덕
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1697-1702
    • /
    • 2004
  • In this paper, we proposed the design and calibration method for the near infrared Acousto-Optic Tunable Filter (AOTF). The theory and design principles of AOTF for the visible light are well known since I.C.Chang has developed the parallel tangent condition for the non-collinear AOTF. Deflection angle, frequency-wavelength relation, spectral resolution, etc. were calculated based on the theory of AOTF. From this result, important parameters - incident and acoustic angle - to fabricate AOTF were decided. We measured the spectral resolution and the relation between electrical driving frequency and the Optical wavelength of diffracted light to calibrate the near infrared AOTF. About 40 ∼ 80 MHz electrical frequency was required to get 1200 ∼ 2200 nm near infrared light. Spectral resolution was less than 10 nm in the near infrared region.

복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구 (An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics)

  • 백진성;이강수;박종빈;이정탁;손충렬
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

플랩 블레이드를 이용한 조류 터빈의 부하 저감에 대한 연구 (Study on Load Reduction of a Tidal Steam Turbine Using a Flapped Blade)

  • 정다솜;고진환
    • Ocean and Polar Research
    • /
    • 제42권4호
    • /
    • pp.293-301
    • /
    • 2020
  • Blades of tidal stream turbines have to sustain many different loads during operation in the underwater environment, so securing their structural safety is a key issue. In this study, we focused on periodic loads due to wave orbital motion and propose a load reduction method with a blade design. The flap of an airplane wing is a well-known structure designed to increase lift, and it can also change the load distribution on the wing through deflection. For this reason, we adopted a passive flap structure for the load reduction and investigated its effectiveness by an analytical method based on the blade element moment theory. Flap torsional stiffness required for the design of the passive flap can be obtained by calculating the flap moment based on the analytic method. Comparison between a flapped and a fixed blade showed the effect of the flap on load reduction in a high amplitude wave condition.

On bending analysis of perforated microbeams including the microstructure effects

  • Abdelrahman, Alaa A.;Abd-El-Mottaleb, Hanaa E.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.765-779
    • /
    • 2020
  • This article presents a nonclassical size dependent model based on the modified couple stress theory to study and analyze the bending behavior of perforated microbeams under different loading patterns. Modified equivalent material and geometrical parameters for perforated beam are presented. The modified couple stress theory with one material length scale parameter is adopted to incorporate the microstructure effect into the governing equations of perforated beam structure. The governing equilibrium equations of the perforated Timoshenko as well as the perforated Euler Bernoulli are developed based on the potential energy minimization principle. The Poisson's effect is included in the governing equilibrium equations. Regular square perforation configuration is considered. Based on Fourier series expansion, closed forms for the bending deflection and the rotational displacements are obtained for simply supported perforated microbeams. The proposed methodology is validated and compared with the available results in the literature and an excellent agreement is detected. Numerical results demonstrated the applicability of the proposed methodology to investigate the bending behavior of regularly squared perforated beams incorporating microstructure effect under different excitation patterns. The obtained results are significantly important for the design and production of perforated microbeam structures.

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.

Preliminary Study on Deformation During Hydrostatic Testing in a Deep Tank

  • Kim, Geun-Gon;An, Tae-Hyun;Lee, Tak-Kee
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.115-124
    • /
    • 2022
  • There are many different types of tanks on ships that meet various requirements. Each tank is required to undergo hydrostatic testing according to the Ship Safety Act after being installed onboard. In some hydrostatic tests, excessive deformation may occur. The overpressure of the air in the tank generated during testing is one of the possible causes of deformation. Based on the dimensions of the tank, nozzle, and pipes installed, it was confirmed that the overpressure of the air can cause problems with the structure, according to the Bernoulli equation. Additionally, finite element analysis (FEA) was performed on the tank structure to confirm the deformation and the stress occurring in the structure. From the perspective of deformation, the maximum deflection limit was set based on the criteria provided by the Eurocode and DNV. From the perspective of stress, the structural safety assessment was performed by comparing the allowable stress and equivalent stress generated in the structure. To determine whether the behavior of the actual structure was well implemented via FEA, beam theory was applied to the tank structure and compared with the FEA results. As a result of the analysis, severe deformation was found in some cases. This means that the overpressure of the air may be the cause of actual deformation. It was also confirmed that permanent deformation may occur.