• Title/Summary/Keyword: deflection and stress analysis

Search Result 356, Processing Time 0.023 seconds

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

Structural Deflection Analysis of Robot Manipulator for Removing Nuclear Fuel Rod in Nuclear Reactor Vessel (원자로내 핵연료봉 제거 로봇 구조물의 휨변형구조해석)

  • 권영주;김재희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.203-209
    • /
    • 1999
  • In this study, the structural deflection analysis of robot manipulator for removing nuclear fuel rod from nuclear reactor vessel is performed by using general purpose finite element code (ANSYS). The structural deflection analysis results reported in this study is very required for the accurate design of robot system. The structural deflection analysis for the manipulator's structural status at which the gripper grasps and draws up the nuclear fuel rod is done, For this beginning structural status of robot manipulator's removing motion, the reaction forces at each joint have static maximum values as reported in the reference(6), and so these forces may cause the maximum deflection of robot structure. The structural deflection analysis is performed for selected four working cases of the proposed structural model and results on deformation, stress for the manipulator's solid body and the deflection at the end of robot manipulator's gripper are calculated. And further, the same analysis is performed for the slenderer manipulator with cross section reduced by one-fifth of each side length of proposed model. The analysis is performed not only for the nuclear fuel rod with weight load of 300kg but also for nuclear fuel rods with weight loads of 100kg, 200kg, 400kg and 500kg. The static structural deflection analysis results show that the deflection value increases as the load increases and the largest value (corresponding to the weight load of 500kg in case 1) is much smaller than the gap distance between nuclear fuel rods. but the largest value for the slenderer manipulator is almost as large as the gap distance, Hence, conclusively, the proposed manipulator's structural model is acceptably safe for mechanical design of robot system.

  • PDF

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN BONE BY THE TRANSPALATAL LINGUAL ARCH (TRANSPALATAL LINGUAL ARCH에 의한 골내 응력 분포에 관한 광탄성적 연구)

  • Ko, Ki-Young;Tae, Ki-Chul;Kook, Yoon-Ah;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.711-721
    • /
    • 1997
  • The purpose of this study was to investigate the stress distribution and intensity derived from the transpalatal lingual arch in the investing bone composed of photoelastic material(PL-3). The transpalatal lingual arch wire was deflected in the horizontal and vertical direction to give the various conditions. The two-dimensional photoelastic stress analysis was performed, and the stress distrebution was recored by photography The results were as follows: 1. In bilateral expansion, as horizontal deflection was singly applied, the stress was more concentrated on the root apex in square free end than round. In square free end, as vertical deflection was increased gradually, the black line meaning center of rotation moved inferiorly together with the increment of whole fringes. 2. In application of vertical deflection on anchorage side for unilateral expansion, the stress distribution that expansive force leaned to expansion side was observed. As vortical deflection increased, the extruding stress was observed on molar of expansion side. And as horizontal deflection increased, the tipping stress on the molar of anchorage side was observed. 3. In unilateral rotation with the asymmetric toe-in, the fringe appeared on the distal aspect of root apex.

  • PDF

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

Optimum Design of Moving Carrier for Minimizing Deflection in Al5083 Thick Plate (대면적 알루미늄 후판의 수평 이송을 위한 캐리어 최적설계)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.389-393
    • /
    • 2013
  • One of the most efficient designs for manufacturing LNG tank is the Moss spherical type because it has been validated through precise analyses with respect to reliability and construction safety by stress analysis. The Moss spherical tank is assembled with hundreds of Al thick plate patches that are deformed to curved shape at elevated temperature and welded together. It is essential to evaluate the amount of deflection in the Al5083 thick plate when the patch is transferred from the heating chamber to the forming die since the patch has a length of 12,000 mm and a thickness of 60 mm. Based on FE analysis results, a design procedure for minimizing deflection in Al5083 thick plate during transfer using a moving carrier is demonstrated in this paper.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Development of a Design System for a Cable Tray (케이블 트레이 설계시스템 개발)

  • Choi, Du-Soon;Choi, WooSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.89-96
    • /
    • 2017
  • A cable tray is a structure made of metal or a non-combustible material that supports cables in the electrical wiring of buildings. Cable trays should be developed to meet the various requirements of the construction site. In this study, a design system was developed to calculate the maximum support load and the maximum deflection according to the cross-sectional shape of the cable tray. The cross-sections of cable trays were modeled by combining linear and arc elements, and cross-sectional characteristics such as the 2nd moment of area were calculated. The distributed load and the concentrated load were applied to the cable tray using the Euler beam theory, and then the deflection profiles and maximum stress were calculated. To verify the developed system, deflection distributions and maximum stresses for two types of cable trays were calculated and compared. The maximum deflection and maximum stress errors calculated from the developed system were found to be less than 4% compared with numerical analysis results.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.