• 제목/요약/키워드: defense signaling

검색결과 197건 처리시간 0.03초

Nitric Oxide Dependency in Inflammatory Response-related Gene Transcripts Expressed in Lipopolysaccharide-treated RAW 264.7 Cells

  • Pie, Jae-Eun;Yi, Hyeon-Gyu
    • Molecular & Cellular Toxicology
    • /
    • 제5권4호
    • /
    • pp.354-363
    • /
    • 2009
  • Cytotoxic Nitric oxide (NO) overproduced by inducible NO Synthase (iNOS or NOS2), which was induced in inflammatory reactions and immune responses directly or indirectly affects the functions as host defense and can cause normal tissue damage. Microarray analysis was performed to identify gene profiles of both NO-dependent and -independent transcripts in RAW 264.7 macrophages that use selective NOS2 inhibitors aminoguanidine ($100\;{\mu}M$) and L-canavanine (1 mM). A total of 3,297 genes were identified that were up- or down-regulated significantly over 2-fold in lipopolysaccharide (LPS)-treated macrophages. NO-dependency was determined in the expressed total gene profiles and also within inflammatory conditions-related functional categories. Out of all the gene profiles, 1711 genes affected NO-dependently and -independently in 567 genes. In the categories of inflammatory conditions, transcripts of 16 genes (Pomp, C8a, Ifih1, Irak1, Txnrd1, Ptafr, Scube1, Cd8a, Gpx4, Ltb, Fasl, Igk-V21-9, Vac14, Mbl1, C1r and Tlr6) and 29 geneas (IL-1beta, Mpa2l, IFN activated genes and Chemokine ligands) affected NO-dependently and -independently, respectively. This NO dependency can be applied to inflammatory reaction-related functional classifications, such as cell migration, chemotaxis, cytokine, Jak/STAT signaling pathway, and MAPK signaling pathway. Our results suggest that LPS-induced gene transcripts in inflammation or infection can be classified into physiological and toxic effects by their dependency on the NOS2-mediated NO release.

Activation of JNK and c-Jun Is Involved in Glucose Oxidase-Mediated Cell Death of Human Lymphoma Cells

  • Son, Young-Ok;Jang, Yong-Suk;Shi, Xianglin;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.545-551
    • /
    • 2009
  • Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide ($H_2O_2$)-induced cell death are unclear. This study examined the effects of $H_2O_2$ on the activation of MAPK and AP-1 by exposing the cells to $H_2O_2$ generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to $H_2O_2$ affected the activities of MAPK differently according to the method of $H_2O_2$ exposure. $H_2O_2$ increased the AP-1-DNA binding activity in these cells, where continuously generated $H_2O_2$ led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-$NH_2$-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the $H_2O_2$-induced cell death. However, the suppression of $H_2O_2$-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus $H_2O_2$. This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that $H_2O_2$ may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to $H_2O_2$ than the concentration of this agent.

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

  • Jeon, Eun-Hee;Chung, Eun-Sook;Lee, Hye-Young;Pak, Jung-Hun;Kim, Hye-Jeong;Lee, Jai-Heon;Moon, Byung-Ju;Jeung, Ji-Ung;Shin, Sang-Hyun;Chung, Young-Soo
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.193-198
    • /
    • 2009
  • A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.

Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1

  • Batbayar, Sainkhuu;Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.433-445
    • /
    • 2012
  • During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. ${\beta}$-Glucans are glucose polymers of a linear ${\beta}$(1,3)-glucan backbone with ${\beta}$(1,6)-linked side chains. The immunostimulatory and antitumor activities of ${\beta}$-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate ${\beta}$-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled ${\beta}$-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of ${\beta}$-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of ${\beta}$-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of ${\beta}$-glucan contributes to its immunostimulating effect in hosts and the potential uses of ${\beta}$-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of ${\beta}$-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.

Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

  • Elsharkawy, Mohsen Mohamed;Shimizu, Masafumi;Takahashi, Hideki;Ozaki, Kouichi;Hyakumachi, Mitsuro
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.193-200
    • /
    • 2013
  • Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y) in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI). CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA) at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI) of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF) of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.

IP 기반 통합 네트워크에서 사용자 이동성 지원을 위한 세션 관리 방안 (Session Management Scheme for Supporting User Mobility in a IP-Based Convergence Network)

  • 유명주;박주만;이종성
    • 한국통신학회논문지
    • /
    • 제41권6호
    • /
    • pp.652-662
    • /
    • 2016
  • 본 논문은 IP 기반의 통합 네트워크 환경에서 사용자가 단말을 변경해가며 서비스를 이용하고자 하는 경우에 끊김없는 서비스 이용이 가능한 사용자 이동성 관리 방안을 제안한다. 기존 이동성 기술들과 현재 진행 중인 대부분의 이동성 관련 연구들은 단말 이동성 지원에 집중되어 있어 다양한 유형의 이동성을 지원하기에 한계가 있다. 제안방안은 사용자 고유의 식별자인 UID(User Identifier)와 사용자가 이용하는 단말 고유의 식별자인 TID(Terminal Identifier) 간 매핑 관계와 사용자 고유의 영구적인 3계층 주소를 이용한 패킷 구성으로 사용자가 서비스 이용 중에 단말을 변경하더라도 세션이 유지될 수 있도록 한다. 제안방안에 의한 성능 향상을 검증하기 위해 수식을 이용하여 기존 사용자 이동성 방안과 제안방안의 핸드오버 시그널링 비용을 분석하고 비교하였다. 그 결과 제안방안이 기존방안 보다 더 나은 성능을 보임을 확인하였다.

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.

Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

  • Wang, Yiming;Kwon, Soon Jae;Wu, Jingni;Choi, Jaeyoung;Lee, Yong-Hwan;Agrawal, Ganesh Kumar;Tamogami, Shigeru;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Beom-Gi;Jung, Ki-Hong;Kang, Kyu Young;Kim, Sang Gon;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.343-354
    • /
    • 2014
  • Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice

  • Kottapalli, Kameswara Rao;Satoh, Kouji;Rakwal, Randeep;Shibato, Junko;Doi, Koji;Nagata, Toshifumi;Kikuchi, Shoshi
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.394-408
    • /
    • 2007
  • Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses.

Effects of in vitro immune stimulation by ginsenoside Rb1

  • Kim, Ji-Young;Han, Eun-Hee;Jeong, Hye-Gwang
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2006년도 춘계학술대회
    • /
    • pp.57-58
    • /
    • 2006
  • Red ginseng is a classical traditional Chinese medicine. Among Chinese herbs, red ginseng has been considered as one of the tonics. Many studies indicated that red ginseng could enhance immune function of the human body. Red ginseng total saponin, ginsenoside, the most important active constituents identified in red ginseng can protect against myocardial ischaemia damage and protect endothelium against electrolysis-induced free radical injury. Macrophages play a significant role in host defense mechanisms. When activated, they inhibit the growth of a wide variety of tumor cells. The aim of this study was to determine the effects of pure ginsenoside Rb1 on immunostimulatory activity such as murine macrophage phagocytosis and proliferation of splenocytes. Furthermore, we investigated the effects of ginsenoside Rb1 on the production of nitric oxide (NO), reactive oxygen species (ROS) and proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) in murine macrophage, RAW 264.7 cells. ROS have emerged as important signaling molecules in the regulation of various cellular processes. Ginsenoside Rb1 significantly increased production of ROS in dose dependent manner. As NO plays an important role in immune function, ginsenoside Rb1 treatment could modulate several aspects of host defense mechanisms due to stimulation. Treatment with ginsenoside Rb1 to macrophages induced the production of NO and proinflammatory cytokines and expression levels of these genes in a dose-dependent manner. Furthermore, incubation of RAW 264.7 cells with ginsenoside Rb1 showed a dose dependent increased phagocytosis activity and lymphocyte proliferation of splenocytes. Therefore, these results suggest that ginsenoside Rb1 has promising potential as a natural medicine for stimulation of the immune system.

  • PDF