• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.028 seconds

Performance Analysis of Range and Velocity Measurement Algorithm for Multi-Function Radar using Discriminator Estimation Method (변별기 추정방식을 적용한 다기능 레이다용 거리 및 속도 측정 알고리즘 성능 분석)

  • Choi Beyung Gwan;Lee Bum Suk;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Range and velocity measurement algorithm is a procedure for estimating the accurate target position by using matched filter outputs equally spaced both in range and doppler frequency domain. Especially, in measurement algorithm for multi-function radar, it is necessary to consider processing time as well as accuracy in order to track multi-targets simultaneously. In this paper, we analyze range and velocity measurement algorithm using discriminator estimation method which is a technique applied to angle measurement of monopulse radar. The applied method required constant processing time for estimation can be used in multiple target tacking. But, it is necessary to consider measurement accuracy because of using minimum channel outputs for estimation. In the simulation, we show that the applied method is superior to the traditional gravity center measurement algorithm with respect to the accuracy performance and also analyze the characteristics of the proposed technique by calculating RMS error level as the processing parameters such as pulse width , channel step, etc. change.

Development Status of Military Search and Rescue System M&S Software (군 탐색구조 시스템 M&S 소프트웨어 개발 현황)

  • Kim, Jaehyun;Lee, Sanguk;Kim, Jaehoon;Ahn, Woo-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.121-126
    • /
    • 2014
  • ETRI(Electronics and Telecommunication Research Institute) has joined National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development in 2010. The research subject is technology for MSAR(Military Search and Rescue) system configuration. In this project, we analyses the ways in order to improve the accuracy, reliability, availability for MSAR system from M&S(Modeling and Simulation). The MSAR System M&S Software can be used for performance analysis of new elements, such as ground elements and satellite elements without any hardware development. In this paper, after introduction of the architecture design and functional scope of the simulator, the performance analysis result for MSAR M&S software is presented.

Joint Polarization and Frequency Assignment Algorithm Based on Graph Theory (그래프 이론 기반의 편파 및 주파수 지정 알고리즘)

  • Koo, Bonhong;Chae, Chan-Byoung;Park, Sung-Ho;Park, Hwi-Sung;Ham, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.954-957
    • /
    • 2016
  • In cases of military communication plan, it often requires to find a proper solution for frequency assignment within feasible time. Minimizing the number of used resources are related to cost issue, hence it is a critical objective. When the dual polar antenna is used, the performance can be much developed by exploiting the polarization separation. In this paper, we propose an algorithm that assigns polarizations and frequencies within complexity of $O(N^2)$ based on the graph matching theory. We have verified that the proposed algorithm shows almost twice performance relative to the uni-polar frequency assignment algorithms and it approaches very closely to its theoretical optima.

Flexible Decision-Making for Autonomous Agent Through Computation of Urgency in Time-Critical Domains (실시간 환경에서 긴급한 정도의 계산을 통한 자율적인 에이전트의 유연한 의사결정)

  • Noh Sanguk
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1196-1203
    • /
    • 2004
  • Autonomous agents need considerable computational resources to perform rational decision-making. The complexity of decision-making becomes prohibitive when large number of agents are present and when decisions have to be made under time pressure. One of approaches in time-critical domains is to respond to an observed condition with a predefined action. Although such a system may be able to react very quickly to environmental conditions, predefined plans are of less value if a situation changes and re-planning is needed. In this paper we investigate strategies intended to tame the computational burden by using off-line computation in conjunction with on-line reasoning. We use performance profiles computed off-line and the notion of urgency (i.e., the value of time) computed on-line to choose the amount of information to be included during on-line deliberation. This method can adjust to various levels of real-time demands, but incurs some overhead associated with iterative deepening. We test our framework with experiments in a simulated anti-air defense domain. The experiments show that the off-line performance profiles and the on-line computation of urgency are effective in time-critical situations.

A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship (구조함정 Wet Bell Diving System 운용성능 개선에 관한 연구)

  • Choi, Woo-Suk;Chang, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.176-183
    • /
    • 2020
  • A ship has three types of diving systems (Diver Stage Diving, Wet Bell Diving and Scuba Diving) to carry out a search-and-rescue operation. To reduce the possibility of decompression sickness, any diving systems shall comply with the decompression procedure according to the decompression table corresponding to the diving depth and diving time. The decompression procedure is largely divided into two methods: underwater decompression and underwater-onboard decompression. In particular, the surface interval shall not exceed 5 minutes, which is the phase from underwater decompression to underwater-onboard decompression, in accordance with the U.S Navy Diving Manual. However, the surface interval is greater than 5 minutes as a result of using Wet Bell Diving. This paper describes the result of cause analysis and measurement with improved Wet Bell Diving. Using improved Wet Bell Diving reduced the surface interval to less than 5 minutes. The result of the research can be used for operation and improving the performance of diving systems.

Acute phase protein mRNA expressions and enhancement of antioxidant defense system in Black-meated Silkie Fowls supplemented with clove (Eugenia caryophyllus) extracts under the influence of chronic heat stress

  • Bello, Alhassan Usman;Sulaiman, Jelilat Aderonke;Aliyu, Madagu Samaila
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.39.1-39.12
    • /
    • 2016
  • Background: The current study investigates the anti-stress effects of clove (Eugenia caryophyllus) extracts (0, 200, 400, and 600 mg/kg) on serum antioxidant biomarkers, immune response, immunological organ growth index, and expression levels of acute phase proteins (APPs); ovotransferrin (OVT), ceruloplasmin (CP), ceruloplasmin (AGP), C-reactive protein (CRP), and serum amyloid-A (SAA) mRNA in the immunological organs of 63-d-old male black-meated Silkie fowls subjected to 21 d chronic heat stress at $35{\pm}2^{\circ}C$. Results: The results demonstrated that clove extract supplementation in the diet of Silkie fowls subjected to elevated temperature (ET) improve growth performance, immune responses, and suppressed the activities of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and thioredoxin reductase (TXNRD); reduced serum malonaldehyde (MDA) and glutathione (GSH) concentrations when compared with fowls raised under thermoneutral condition (TC). Upon chronic heat stress and supplementation of clove extracts, the Silkie fowls showed a linear increase in GSH-Px, SOD, CAT, and TXNRD activities (P = 0.01) compared with fowls fed diets without clove extract. ET decreased (P < 0.05) the growth index of the liver, spleen, bursa of Fabricius and thymus. However, the growth index of the liver, spleen, bursa of Fabricius and thymus increased significantly (P < 0.05) which corresponded to an increase in clove supplemented levels. The expression of OVT, CP, AGP, CRP, and SAA mRNA in the liver, spleen, bursa of Fabricius and thymus were elevated (P < 0.01) by ET compared with those maintained at TC. Nevertheless, clove mitigates heat stress-induced overexpression of OVT, CP, AGP, CRP and SAA mRNA in the immune organs of fowls fed 400 mg clove/kg compared to other groups. Conclusions: The results showed that clove extracts supplementation decreased oxidative stress in the heat-stressed black-meated fowls by alleviating negative effects of heat stress via improvement in growth performance, antioxidant defense mechanisms, immunity, and regulate the expression of acute phase genes in the liver and immunological organs.

Deployment test of shape memory polymer specimens for space antenna design (우주 안테나 설계용 형상기억 폴리머 시편의 전개 시험)

  • Goo, Nam Seo;Le, Van Luong;An, Yongsan;Yu, Woong-Ryeol;Hwang, Jin Ok;Park, Jongkyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1007-1012
    • /
    • 2017
  • In this study, we performed the deployment test of shape memory polymer specimens for space antenna design. Poly(cyclootene) was cross-linked by dicumyl peroxide to make a PCO shape memory polymer. A miniature specimen with 120 mm diameter for a deployable antenna was fabricated with the PCO shape memory polymer. To investigate the deployment performance, the folded specimen as a temporary shape was heated by two heaters to the $15^{\circ}C$ higher temperature than the glass transition temperature of shape memory polymer. Firstly, the specimen was installed horizontally and tested. The deploying motion was captured by a digital camera and analyzed by a Tracker program. To reduce the effects of gravity, the specimen was installed vertically and tested again. The deployment performance of a shape memory polymer was investigated by comparing the results of horizontal and vertical installation tests.

Study on the Small Sized Robots Actuator using Piezoelectric Ceramic Bender (압전세라믹 벤더를 이용한 소형로봇용 구동원에 관한 연구)

  • Park, Jong-Man;Song, Chi-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study proposed piezoelectric ceramic bender actuators for application to small walking robots. As the space where human access has recently become increasingly restricted (e.g., highly concentrated radioactive storage areas, viral contaminated areas, terrorist zones, etc.), the scope of using robots is becoming more diverse, and many actions that were possible only in the past have been attempted to be replaced by small robots. This robotic concept has the advantage of being simple in structure, making it compact and producing a large size work force. The dynamic modeling, using finite element analysis, maximized the robot's mobility performance by optimizing the shape of the actuator, and the results were verified through fabrication and experimentation. The actuator moved at a maximum speed of 236 mm/s under no load conditions, and it could move at a speed of 156 mm/s under load conditions of 5g. The proposed actuator has the advantage of modular additions depending on the mission and required performance, which ensured that they are competitive against similar drive sources previously created.

Fail safe and restructurable flight control system

  • Kanai, K.;Ochi, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.21-29
    • /
    • 1994
  • This paper presents a method to accommodate failures that affect aircraft dynamical characteristics, especially control surface jams on a large transport aircraft. The approach is to use the slow effectors, such as the stabilators or engines, in the feedforward manner. The simulation results indicate the performance of the RFCS. In some cases of control surface jam, the aircraft cannot recover without using the stabilators. Although the inputs to the slow effectors are determined using the nominal parameters, the effects of parameter change can be compensated by adjusting the control parameters for the fast surfaces. In the case of rudder jam, if the remaining control surfaces and the differential thrust cancel the moments produced by the stuck rudder, using the engine control improves time responses and reduces deflection angles of the control surfaces. If not, however, the aircraft starts a large rolling motion following a yawing motion. In that case, the stabilators should be used to damp the induced rolliig motion, instead of trying to directly cancel the moments caused by the stuck rudder. Unfortunately, the proposed control law for the stabilators does not give such inputs, because it does not take into account the dynamical effects which stuck surfaces have on the aircraft motions. However, we have shown through simulation that the aircraft can be recovered by giving the stabilators the control inputs that counteract the induced rolling moment. Besides, the method has also been shown through simulation to be effective in maintaining control during a situation similar to an actual accident. Finally let us mention a problem with the RFCS. As stated above, we have not established a method to select a trim point which call be reached as easily as possible using the remaining control effectors. In fact, recovery performance considerably depends on the trim states. As pointed out in Ref. 11, finding the best trim point for impaired aircraft will be one of the most difficult questions in RFCS design.

  • PDF

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.