• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.032 seconds

Evaluation of Applicability of Circuit-analog Radar Absorbing Structures for High Temperature in 350℃ and Hot-wet Environment (고온용 Circuit-analog 전파흡수구조의 350℃ 및 열 수분 환경에서의 적용성 평가)

  • Min-Su Jang;Ho-Beom Kim;Heon-Suk Hong
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2023
  • We proposed a high-temperature circuit-analog radar absorbing structures (CA-RAS), and evaluated radar absorption performance and tensile properties in 350℃ and a hot-wet environment. The CA-RAS was implemented with a glass/cyanate ester composites and a square resistive pattern layer, and reflection loss was measured by 350℃ and after exposure of hot-wet condition using free space measurement. And the tensile strength at 350℃ and after exposure of hot-wet condition was measured according to the ASTM D638. The proposed CA-RAS showed a 4 GHz of -dB bandwidth and -20 dB of a peak value at 350℃. In addition, there was no deterioration in absorption performance after exposure to a hot-wet condition. The tensile strength value of more than 95% compared to the strength of the glass/cyanate ester composite was confirmed at 350℃ and after exposure of hot-wet condition. Through this, the applicability of CA-RAS proposed in this study was confirmed as a load bearing structure for stealth weapon exposed to high temperature and hot-wet environment.

Development of a Test Environment for Performance Evaluation of the Vision-aided Navigation System for VTOL UAVs (수직 이착륙 무인 항공기용 영상보정항법 시스템 성능평가를 위한 검증환경 개발)

  • Sebeen Park;Hyuncheol Shin;Chul Joo Chung
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.788-797
    • /
    • 2023
  • In this paper, we introduced a test environment to test a vision-aided navigation system, as an alternative navigation system when global positioning system (GPS) is unavailable, for vertical take-off and landing (VTOL) unmanned aerial system. It is efficient to use a virtual environment to test and evaluate the vision-aided navigation system under development, but currently no suitable equipment has been developed in Korea. Thus, the proposed test environment is developed to evaluate the performance of the navigation system by generating input signal modeling and simulating operation environment of the system, and by monitoring output signal. This paper comprehensively describes research procedure from derivation of requirements specifications to hardware/software design according to the requirements, and production of the test environment. This test environment was used for evaluating the vision-aided navigation algorithm which we are developing, and conducting simulation based pre-flight tests.

Reverse-Update Adversarial Data for Enhancing Adversarial Attack and Adversarial Training Performance (적대적 공격 및 방어 기술의 성능 향상을 위한 역방향 적대적 데이터 생성 연구)

  • Jung Yup Rhee;Wonyoung Cho;Leo Hyun Park;Taekyoung Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.981-991
    • /
    • 2024
  • Adversarial attacks, which induce malfunctions in AI technologies, can be applied to various domains and models, easily compromising SOTA (State-of-the-Art) models. Although adversarial defense techniques have been developed to counter these attacks, their applicability is limited due to constraints. Consequently, not only is the adoption of AI technology delayed, but also advanced research is restricted. To address this issue, this paper introduces a novel concept of adversarial data by reversing the sign of the loss function update in adversarial attacks. Experiments were conducted by applying the reverse-update adversarial data to data poisoning and adversarial training environments, showing that it can reduce the model's performance up to 72% and is most effective in enhancing robustness in 6 out of 9 environments. Ultimately, the proposed data can stimulate extensive research on adversarial attacks and defenses, further promoting the advancement of defense technology and contributing to the safe adoption of AI.

Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures

  • Liu, Wang;Li, Dong-Xu;Jiang, Jian-Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • A well-designed mesh shape of the cable net is of essential significance to achieve high performance of cable-network antenna reflectors. This paper is concerned with the mesh design problem for such antenna reflector structure. Two new methods for creating the topological forms of the cable net are first presented. Among those, the cyclosymmetry method is useful to generate different polygon-faceted meshes, while the topological mapping method is suitable for acquiring triangle-faceted meshes with different mesh grid densities. Then, the desired spatial paraboloidal mesh geometrical configuration in the state of static equilibrium is formed by applying a simple mesh generation approach based on the force density method. The main contribution of this study is that a general technical guide for how to create the connectivities between the nodes and members in the cable net is provided from the topological point of view. With the new idea presented in this paper, multitudes of mesh configurations with different net patterns can be sought by a certain rule rather than by empiricism, which consequently gives a valuable technical reference for the mesh design of this type of cable-network structures in the engineering.

Development of an Aircraft Hydraulic Brake Assembly with a Self-gap-adjuster (자동 간극 조절기를 갖는 항공기용 유압식 브레이크 조립체 개발)

  • Yi, Miseon;Song, Won-Jong;Kwon, Jun-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.444-451
    • /
    • 2020
  • This study was conducted to develop the hydraulic brake assembly for MUAV(Medium-altitude Unmanned Aerial Vehicle). The brake assembly has the self-gap adjuster which performs to maintain a constant gap between the piston and the disk, even if the friction pad wore down. The function of adjuster helps to keep the brake-reaction speed constant and prevent the unnecessary abrasion of the wear pad during the life of the brake assembly. The development of the aircraft hydraulic brake assembly with the self-gap-adjuster in this paper is the first ever in South Korea. The concept of the mechanism was defined and the formula which is necessary to calculate the friction force was set up in the paper. The tester was invented for the functional test and the proper operation of the self-gap-adjuster was confirmed through the test. Dynamo tests and flight tests were also carried out to verify the braking performance of the brake assembly.

Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor (모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구)

  • Jin, Yu-In;Ryu, Gyong Won;Min, Seong Ki;Kim, Hong Jip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

Experimental Research on Finding Best Slip Ratio for ABS Control of Aircraft Brake System (항공기용 제동장치의 ABS 제어를 위한 최적 슬립율 결정에 관한 시험적 연구)

  • Yi, Miseon;Song, Wonjong;Choi, Jong Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.597-607
    • /
    • 2017
  • The general control method for Anti-lock Brake System(ABS) is that the wheel slip ratio is observed and the braking force is controlled in real time in order to keep the wheel slip ratio under the value of the best slip ratio. When a wheel runs on the state of the best slip ratio, the ground friction of the wheel approaches the highest value. The value of best slip ratio, theoretically, is known as the value between 10 and 20 % and it is dependant on the ground condition such as dry, wet and ice. It is an important parameter for the braking performance and affects the braking stability and efficiency. In this thesis, an experimental method is suggested, which is a reliable way to decide the best slip ratio through dynamo tests simulating aircraft taxiing conditions. The obtained best slip ratio is proved its validity by results of aircraft taxiing tests.

A Study of Laboratory Measurement of EO GRD Resolution for Airborne EO/IR Sensor (항공용 EO/IR 센서의 EO GRD 분해능 실험실 측정 연구)

  • Huh, Joon;Kim, Chang-Woo;Kim, Sungsoo;Kim, Byoung-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.793-799
    • /
    • 2014
  • EO GRD(Ground Resolved Distance) resolution of airborne EO/IR(Electro-Optical/Infrared) sensor is a critical factor in test and evaluation for EO sensor performance. We propose the laboratory measurement set-up for EO GRD by constructing optical collimator which includes integrated sphere, blackbody, equivalent 3-bar target and 6 DOF motion simulator. GRD is measured in the photographic imagery of bar targets by 3 different distances for 3 EO/IR sensors and the measured results were analyzed statistically. We found that at least 7 sheets of imagery are needed in order to obtain meaningful EO GRD. The result of statistical analysis shows that the distribution of the measured GRD is nearly symmetric about the average GRD, and the better imagery ratio above the average GRD is about 40~70%. Also from the best GRD analysis, it is estimated that the design goal for EO GRD should be 30% superior to the required GRD.

A Study on the Measurement System Design for Measuring Properties of AC Magnetic Field Sensor (교류 자기센서 특성 시험장치 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2015
  • This paper describes design and construction results of the measurement system developed on the purpose of measuring properties of AC magnetic field sensors used in the weapon system. The system for measuring the properties of AC magnetic field sensors consist of 3-axis helmholtz coil, signal generator, signal amplifier, sensor data acquisition unit and AC magnetic field sensor property measurement & analysis equipment including the operating software. By using this system, we can measure various properties of AC magnetic field sensor such as sensitivity, linearity and dynamic response in the frequency from 1 Hz to 10 kHz. Finally we also verified its performance by measuring the property of a MAG 639, standard magnetic field sensor of bartington instruments, with the developed measurement system.

A Study on Endurance Test Mode Generation of Powertrain System Using Multi-Objective Optimization (다목적 최적화 기법을 이용한 동력장치의 실차 내구시험모드 생성에 관한 연구)

  • Lee, Jeonghwan;Sung, Younghwa;Lee, Byoungyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.614-622
    • /
    • 2018
  • Based on army operating road profile, the endurance test of military vehicle aims to reproduce the similar loading conditions with mixture of proving ground tracks. It is so called as endurance test mode and its optimal generation is important to meet high reliability of endurance test. In this paper, proving ground optimization is proposed to achieve a close match to the target profile. Several performance measures such as torque-revolution counts or transmission ratio for the powertrain system can be considered as one of the objective functions. However, the one-side optimal endurance test mode may give the poor solution in the whole system point of view. To incorporate several goals simultaneously, this paper employs multi-objective optimization technique to generate endurance test mode. One of the most widely used method, weighted-sum method is applied here and the case study is discussed.