• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.032 seconds

Experimental Study on Acoustic Absorption and Transmission Characteristics of Aluminium and Sandwich Composite Structure (금속 및 샌드위치 복합재 유도탄 구조체의 흡음 및 차음 특성에 관한 실험적 연구)

  • Lee, Yoon-kyu;Lee, Dae-oen;Jin, Byung-Dae;Lee, Dong-min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.288-294
    • /
    • 2018
  • Recently, as the speed and performance of the launcher and the missile have been improved, it is necessary to consider the acoustic load of launching and flight in initial design step. In this paper, an experimental study on acoustic absorption and transmission characteristics of aluminium vs. sandwich composite structures were conducted. The overall noise reduction was evaluated by performing an acoustic test in the reverberation room, and the acoustic absorption and transmission loss of the structures were analyzed by conducting the sound absorption test inside the structure.

Design and Implementation of the Massive Underwater Acoustic Database System (대용량 해상시험자료 데이터베이스 시스템 설계 및 구현)

  • Jeong, Gi-Hyeon;Choe, Jae-Yong;Do, Gyeong-Cheol;Kim, Eung-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2020-2030
    • /
    • 1999
  • Data acquired about 53 gigabyte per a naval vessel is massive, expensive and impossible to be retested in a underwater acoustic measurement. So, it is required to manage systematically. In this paper, we mention MUADS (Massive Underwater Acoustic Database System) that was developed to store a long time, manage systematically and supply raw data and analyzed data. we analyze client/server performance based on 6003 input data individually in our MUADS that Unix server having a massive DC-jukebox and Windows clients.

  • PDF

Multi-Task FaceBoxes: A Lightweight Face Detector Based on Channel Attention and Context Information

  • Qi, Shuaihui;Yang, Jungang;Song, Xiaofeng;Jiang, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4080-4097
    • /
    • 2020
  • In recent years, convolutional neural network (CNN) has become the primary method for face detection. But its shortcomings are obvious, such as expensive calculation, heavy model, etc. This makes CNN difficult to use on the mobile devices which have limited computing and storage capabilities. Therefore, the design of lightweight CNN for face detection is becoming more and more important with the popularity of smartphones and mobile Internet. Based on the CPU real-time face detector FaceBoxes, we propose a multi-task lightweight face detector, which has low computing cost and higher detection precision. First, to improve the detection capability, the squeeze and excitation modules are used to extract attention between channels. Then, the textual and semantic information are extracted by shallow networks and deep networks respectively to get rich features. Finally, the landmark detection module is used to improve the detection performance for small faces and provide landmark data for face alignment. Experiments on AFW, FDDB, PASCAL, and WIDER FACE datasets show that our algorithm has achieved significant improvement in the mean average precision. Especially, on the WIDER FACE hard validation set, our algorithm outperforms the mean average precision of FaceBoxes by 7.2%. For VGA-resolution images, the running speed of our algorithm can reach 23FPS on a CPU device.

Time Synchronization Using Mutual Interference in Two FMCW Radars (두 대의 FMCW 레이다에서 레이다간 상호 간섭 신호를 이용한 시간동기화 방법)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1323-1326
    • /
    • 2012
  • In military applications, many radar systems are simultaneously operated at a close range. In particular, the frequency allocation must be executed for operating the homogeneous radar systems at the same time. As many radar systems are simultaneously operated with overlapping frequency bands, interference between systems inevitably occurs. Because interference can degrade radar performance, suppression of interference is a critical issue in radar systems. In this letter, we analyze the interference between two FMCW radars. In addition, time synchronization method between radars using mutual interference is proposed. Experiments are carried out to validate the proposed method. The results demonstrate that the proposed method is suitable for real radar systems.

A Study on the Nonlinear Viscoelastic Properties of PBXs (복합화약의 비선형 점탄성 특성 연구)

  • Shim Jung-Seob;Kim Hyoun-Soo;Lee Keun-Deuk;Kim Jeong-Kook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.100-108
    • /
    • 2004
  • Nitramine-polymer composites suffer from a problem known as dewetting. Dewetting adversely affects the performance and the sensitivity characteristics of an explosive composition. Voids, which are generated between explosive particles and binder on dewetting, act as initiation sites. For a PBXs as well as propellants, where good adhesion and mechanical properties are of great importance, dewetting therefore must be prevented by strong adhesion between the filler and the binder. The surface energy of materials is measured by Wilhelmy plate and wicking method. The interfacial energy between the filler and the binder is calculated from the disperse phase and the polar phase of surface energy. Time dependent compressive properties of composite explosives have been determined by stress-strain curves obtained at different strain rates and temperatures. The interfacial state of the PBX was observed through SEM. It was found from the result that the interface between the explosive and the binder becomes better adhesion with decreasing interfacial tension and increasing work of adhesion. The result clearly shows that the castable PBX has good adhesion more than the pressable PBX.

U.S. Navy next generation Aegis Ships and AMDR(Air & Missile Defense Radar) (미 해군의 차기 이지스함과 AMDR)

  • Kim, Soo-hong;Kim, Young-ho;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.462-464
    • /
    • 2015
  • Since the first Aegis Cruiser USS Ticonderoga was constructed, Arleigh Burke class destroyers are being mass constructed as U.S. Naval capital surface ships and consistently improved the performance. In recent years, the newest aegis combat system, Baseline 9, was deployed. Aegis BMD, aegis ships which have BMD capability, is participated BMDS(Ballistic Missile Defense System) as a sea based BMD. And AN/SPY-1D will be replaced by AMDR(Air & Missile Defense Radar), advanced anti-air radar system to defend effectively against increased ballistic missiles threat from DDG-51 Flight III. In this paper, development status and technical characteristics of each type of aegis ships are researched and characteristics of AMDR are surveyed and described.

  • PDF

Design and Implementation of Network Defense Simulator (네트워크 방어 시뮬레이터 설계 및 구현)

  • 이철원;윤주범;임을규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.441-447
    • /
    • 2004
  • Information security simulator is required for the study on the cyber intrusion and defense as information security has been increasingly popular Until now, the main purposes of information security simulation are security estimation of small network as well as performance analysis of information protection systems. However, network simulators that can simulate attacks in a huge network are in needs since large scale internet attacks are very common in these days. In this paper we proposed a simulator design and its implementation details. Our simulator is implemented by expanding the SSFNet program to the client-sewer architecture. A cyber attack scenario used in our simulator is composed by the advanced attack tree model. We analyzed the simulation results to show the correctness of our network defense simulator.

DMRUT-MCDS: Discovery Relationships in the Cyber-Physical Integrated Network

  • Lu, Hongliang;Cao, Jiannong;Zhu, Weiping;Jiao, Xianlong;Lv, Shaohe;Wang, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.558-567
    • /
    • 2015
  • In recent years, we have seen a proliferation of mobile-network-enabled smart objects, such as smart-phones and smart-watches, that form a cyber-physical integrated network to connect the cyber and physical worlds through the capabilities of sensing, communicating, and computing. Discovery of the relationship between smart objects is a critical and nontrivial task in cyber-physical integrated network applications. Aiming to find the most stable relationship in the heterogeneous and dynamic cyber-physical network, we propose a distributed and efficient relationship-discovery algorithm, called dynamically maximizing remaining unchanged time with minimum connected dominant set (DMRUT-MCDS) for constructing a backbone with the smallest scale infrastructure. In our proposed algorithm, the impact of the duration of the relationship is considered in order to balance the size and sustain time of the infrastructure. The performance of our algorithm is studied through extensive simulations and the results show that DMRUT-MCDS performs well in different distribution networks.

A Study on the Security System of the Web Based Defense Information Service Network (WEB 환경에서 국방정보통신망 정보보호체계 구축에 관한 연구)

  • 신유찬;남길현
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.1
    • /
    • pp.115-135
    • /
    • 2002
  • The limits of current DN(Defense networks), private and closed network, become to reality; for Example, high expense of construction and maintenance of networks, restriction of new subscribers on DN. Therefore, a network using web environment that reflect fast development of If and IS(Information Security) technology is demanded for MND. Meeting the requirement of reliable IS system and extension and improvement of DN using common network, we can reduce the expense to extend, maintain, repair DN, form the environment that makes military business cooperate better with civil company and government agency, advance implementing Defense computing and networking service for field small size units that was a exception of Defense digitalization. But it is essential to construct DN based on common network that there are security requisites; confidentiality, integrity, availability, efficiency, log, backup, restoration, that have to be realized at demanding level for IS. This thesis suggested four measurements; replacement DN with common network to resolve the requirements of building new network and improvement of performance for private DN, linkage with common network for new requirement, distribution of traffic using common network, configuration of DN using Internet and Proposed a refinement of IS management organization to treat security threat of common network flexibly, and LAN IS standard model of DN based on the web environment.

Effective Detection and Suppression of Low-Amplitude Interference in FMCW Radars (FMCW 레이다에서 작은 간섭 신호의 효과적인 탐지 및 억제)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.848-851
    • /
    • 2012
  • As many radar systems are simultaneously operated with overlapping frequency bands, interference between systems inevitably occurs. Because interference can degrade radar performance, suppression of interference is a critical issue in radar systems. In this letter, a new interference detection and suppression method using a short-time Fourier transform and an adaptive notch filter is proposed. An experiment is carried out to validate the proposed method and the results demonstrate that the proposed method is suitable for application in real FMCW radars.