• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.029 seconds

Development of Chemical Vapor Sampler for Man-in-Simulant Test(MIST) (화생방 개인보호체계 시험평가용 화학증기 흡착 샘플러의 개발)

  • Jung, Hyunsook;Lee, Kyoo Won;Kah, Dongha;Jung, Heesoo;Ko, Chung Ah;Choi, Geun Seob;Park, Hyen Bae;Lee, Hae Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.387-394
    • /
    • 2015
  • We have recently developed a cost-effective and pouch-type chemical vapor sampler which consists of a selectively permeable high density polyethylene(HDPE) membrane, aluminum/nylon barrier film, and adsorbents. Since the sampler mimics the actual adsorption process that occurs when the skin is exposed to chemical vapors, it can be applied to man-in-simulant test(MIST) to determine the protective capability of individual protective ensembles for chemical warfare agents. In this study, we describe the manufacturing process of samplers and results for performance testing on MIST. Methyl salicylate(MeS) is used to simulate chemical agent vapor and the vapor sampler was used to monitor chemical concentration of MeS inside the protective suit system while worn. Values of protection factors(PF) were also analyzed to provide an indication of the protection level of the suit system evaluate by MIST. The results obtained by home-made samplers(ADD samplers) and commercially avaliable ones(Natick samplers) showed no significant differences.

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.

RAM Target Value Setting for a Defense System Using Subsystems' Mission Profiles and Utilization Rates: Case Study of System A (부체계의 임무 프로파일 및 운용 비율을 고려한 무기체계의 RAM 목표값 설정: A체계 사례 연구)

  • In-Hwa Bae;Sang-Boo Kim;Jea-Woo You;Woo-Jae Park;Eun-Ji You;Min-Young Lee;Ki-Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.885-894
    • /
    • 2023
  • Setting RAM target value for a defense system plays a crucial role in the development and design phases and the production phase as well. It is apparent that the achieved RAM target value can help maximizing the combat capability of a defense system and improving its performance throughout the system's life cycle from acquisition phase to disposal. Usually a defense system operates according to its OMS/MP (Operational Mode Summary / Mission Profile) and it consists of several subsystems which are supposed to be operated at each utilization rate under its operating conditions and the mission profiles assigned. In this study, a method of setting RAM target value is proposed for a defense system that are composed of several independent subsystems considering their utilization rates and the mission profiles assigned. And the case study of applying the proposed method of setting RAM target value to system A is dealt with.

A Study on the Introduction of Defense Technology PD System (국방기술 기획전문가제도 도입방안에 관한 연구)

  • Kim, DoeHun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.117-121
    • /
    • 2018
  • As the paradigm shifts in the era of accelerated technological development and technology convergence, the defense sector is pursuing national defense research and development through selection and concentration, as well as the expansion of investments to develop defense science and technology to the highest possible level. In addition to investing heavily in cutting-edge weapons and core technologies that are consistent with the future, the defense sector is also developing investment strategies within a limited budget. In the private sector, the PD system has been introduced in order to maximize the performance of R&D policy and to improve the professionalism and responsibility of planning & management. In accordance with this trend, in the field of defense, the PD system of defense technology with specialization is being promoted, in order to strengthen the task planning capacity and to promote the utilization of private technology. Considering the need for coherent technical support for the core technology developed by R&D, the improvement of open technology planning systems and expansion of inter-civil & technical linkage, the use of the PD system in the defense field is indispensable. In this study, we review similar cases abroad and at home to examine the introduction and management of the PD system for defense technology. This study is based on the current state of the defense technology PD system that is being pursued.

A Kalman Filter based Video Denoising Method Using Intensity and Structure Tensor

  • Liu, Yu;Zuo, Chenlin;Tan, Xin;Xiao, Huaxin;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2866-2880
    • /
    • 2014
  • We propose a video denoising method based on Kalman filter to reduce the noise in video sequences. Firstly, with the strong spatiotemporal correlations of neighboring frames, motion estimation is performed on video frames consisting of previous denoised frames and current noisy frame based on intensity and structure tensor. The current noisy frame is processed in temporal domain by using motion estimation result as the parameter in the Kalman filter, while it is also processed in spatial domain using the Wiener filter. Finally, by weighting the denoised frames from the Kalman and the Wiener filtering, a satisfactory result can be obtained. Experimental results show that the performance of our proposed method is competitive when compared with state-of-the-art video denoising algorithms based on both peak signal-to-noise-ratio and structural similarity evaluations.

Performance Prediction Techniques of Linear Array Sonar by Merging Data of Real Time and Data Base (실시간 해양정보와 DB정보의 융합을 통한 선배열소나의 성능예측기법 연구)

  • Na Young-Nam;Chang Duck-Hong;Jurng Mun-Sub;Choi Jin-Hyuk;Shim Taebo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.299-304
    • /
    • 1999
  • 시, 공간적으로 변하는 해양환경에서 선배열 소나의 성능예측 정보를 추출하기 위해서는 정밀 해양 DB (Data Base)와 함께 현장에서 실시간으로 측정한 해양자료의 연동이 필수적이다. 이러한 실시간 정보와 DB 정보를 융합하여 얻을 수 있는 정보들로는 전술적 운용상황, 근거리 환경소음 분포, 전파손실/탐지확률 분포, 그리고 음파의 전파 경로 등이 있다. 소나 운용자는 이들 정보로부터 최종적으로 전술상황을 판단함과 동시에 소나의 최적 운용 수심 및 방향을 권고할 수 있다. 국과연에서는 이러한 정보를 획득하기 위하여 음탐환경분석 S/W를 개발하였으며, 수차례의 해상시험을 통하여 그 성능을 검증하였다. 본 논문에서는 실시간 해양정보와 DB정보의 융합을 통하여 선배열 소나의 핵심 성능예측 기법인 전파손실/탐지확률 계산과 근거리 환경소음 계산을 수행하는 알고리즘을 제시한다. 아울러 S/W로 구현된 이들 기법들의 해상시험 결과도 제시하고자 한다.

  • PDF

A Study of Sound Insulation and Structure Safety of the Shelter from the Firing of the Large Caliber Gun (포 발사에 따른 쉘터 구조물의 차음 및 구조안전성 연구)

  • Lee, HaeSuk;Heo, DongEun;Park, NoSeok;Na, TaeHeum;Jang, YoHan;Hong, JunHee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.639-646
    • /
    • 2017
  • This paper describes the sound insulation and structural safety of the shelter which may be used for shooters. The noise level of the shelter should be less than 100 dB on the basis of the Industrial Safety and Act, the World Health Organization and the MIL-STD. The sound insulation design was designed for the shelter structure. The designed shelter performance was verified by the real measurement after completing the construction of the shelter. The system was also designed using the finite element method with data of sound pressure measured in the test. Its response was obtained numerically. It is proved that the shelter structure is sufficiently safe considering the calculated maximum stress level with the allowable stress of structural property.

Flight data analysis and visualization program development (비행시험 자료 분석 및 가시화 프로그램 개발)

  • Park, Young-Keun;Lee, Sung-Jin;Lee, Gi-Doo;Lim, Sang-Soo;Lee, In-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.263-269
    • /
    • 2014
  • Flight test data visualization functions can improve an understanding of flight test results, test procedures, and the performance of a flight vehicle after flight tests. FlyingView was developed for researchers to analyse flight test data in a 3D virtual environment. It also can display X-Y plots using flight test data. It was developed and applied to flight tests of an air-to-ground weapon system of ADD. This paper describes the capabilities of FlyingView.

Adaptive Control for Lateral Motion of an Unmanned Ground Vehicle using Neural Networks (신경망을 활용한 무인차량의 횡방향 적응 제어)

  • Shin, Jongho;Huh, Jinwook;Choe, Tokson;Kim, Chonghui;Joo, Sanghyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.998-1003
    • /
    • 2013
  • This study proposes an adaptive control algorithm for lateral motion of a UGV (Unmanned Ground Vehicle) using an NN (Neural Networks). The lateral motion of the UGV can be corrupted with various uncertainties such as side slip. In order to compensate the performance degradation of the UGV under various uncertainties, an NN-based adaptive control is designed by utilizing a virtual control concept. Since both the drift and input gain terms are uncertain, the proposed method adapts the whole terms related to the difference between the nominal and real systems. To avoid a singularity problem with the adaptive control, the affine property of the UGV dynamic model is utilized and the overall closed-loop stability is analyzed rigorously. Finally, numerical simulations using Carsim are performed to validate the effectiveness of the proposed scheme.