• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.029 seconds

A study on national cybersecurity policy agenda in Korea using national cyber capability assessment model (국가 사이버 역량평가 모델을 활용한 국내 사이버안보 정책 의제 도출 연구)

  • Song, Minkyoung;Bae, Sunha;Kim, So-Jeong
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.89-100
    • /
    • 2021
  • The National Cyber Capability Assessment(NCCA) could be used as meaningful information for improving national cyber security policy because it provides information on the elements necessary for strengthening national cyber capabilities and the level of each country. However, there were few studies on improving cyber capabilities using the NCCA result in Korea. Therefore, we analyzed the result of National Cyber Power Index(NCPI) conducted by Belfer Center of Harvard Univ. by applying modified-IPA method to derive cybersecurity policy agendas for Korea. As a result, the need to set agendas on surveillance and offensive cyber capability and improve the effectiveness of policy implementation for intelligence and defense was drawn. Moreover, we suggested need for in-depth study of each policy agenda deduced from preceding research data as a future tasks. And it is expected to increase practical use of NCCA for domestic policy analysis by developing and using our own NCCA model which considered analysis framework proposed in this study.

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.

Recombinant Production and Antimicrobial Activity of an Antimicrobial Model Peptide (Uu-ilys-CF) Derived from Spoon Worm Lysozyme, Uu-ilys (개불 라이소자임 유래 항균성 모델 펩타이드(Uu-ilys-CF)의 재조합 단백질 생산 및 항균 활성)

  • Oh, Hye Young;Go, Hye-Jin;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Uu-ilys, an i-type lysozyme from spoon worm (Urechis unicinctus), is an innate immune factor that plays an important role in the defense against pathogens. It also possesses non-enzymatic antibacterial activity. Thus, there is a possibility to develop an antimicrobial model peptide from Uu-ilys. In this study, we report the design, production, and antibacterial activity of an Uu-ilys analog that exhibits antibacterial activity. The Uu-ilys structure was fragmented according to its secondary structures to predict the regions with antimicrobial activity using antimicrobial peptide (AMP) prediction tools from different AMP databases. A peptide containing the C-terminal fragment was predicted to exert antimicrobial activity. The chosen fragment was designated as an Uu-ilys analog containing the C-terminal fragment, Uu-ilys-CF. To examine the possibility of developing an AMP using the sequence of Uu-ilys-CF, recombinant fusion protein (TrxA-Uu-ilys-CF) was produced in an expression system that was heterologous. The produced fusion protein was cleaved after methionine leaving Uu-ilys-CF free from the fusion protein. This was then isolated through high performance liquid chromatography and reverse phase column, CapCell-Pak C18. The antibacterial activity of Uu-ilys-CF against different microbial strains (four gram-positive, six gram-negative, and one fungal strain) were assessed through the ultrasensitive radial diffusion assay (URDA). Among the bacterial strains tested, Salmonella enterica was the most susceptible. While the fungal strain tested was not susceptible to Uu-ilys-CF, broad spectrum antibacterial activity was observed.

A Study on the Competition of the World Women's Handball Championship Using Bigdata : Focused on the top 5 teams of the 2007-2019 World Women's Handball Championship (빅데이터를 활용한 여자핸드볼선수권대회 전력 비교 연구 -2007~2019년 세계여자핸드볼선수권대회 상위 5개팀과 대한민국을 중심으로-)

  • Kang, Yong-Gu;Kwak, Han-Pyong
    • Journal of Industrial Convergence
    • /
    • v.19 no.1
    • /
    • pp.147-158
    • /
    • 2021
  • This study was conducted seven times from 2007 to the 2019 Women's World Handball Championships to analyze and strengthen the strength of the Korean women's handball team through the analysis of the top five countries' strengths. Among the 41 national teams participating in the World Women's Handball Championship, a total of five national teams, including the Netherlands, Norway, Russia, Spain, and France, were selected for the final study. Among the records provided by the International Handball Federation (IHF), the ranking was selected by analyzing the competition records of 41 participating countries, and technical statistics and frequency analysis were conducted using the SPSS/PC+ Ver21.0 program. based on the accumulated records of the top five women's handball competitions, handball attack and defense strategies that can make up for the inferiority in future physical conditions are needed and detailed follow-up studies are needed. Also, we hope to use it as a basic resource for improving the performance of Korean women's handball players and to play a key role in enhancing the level of women's handball at the 2021 Tokyo Olympics.

Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test (고폭탄 탄약시험 간 이동형 강재 방호벽의 안전성능 판단 및 유효 방호력 평가 방법)

  • Jeon, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • In this study, a series of processes for evaluating the effective protection against barriers that should be equipped in institutions that perform reliability tests on high-risk ammunition, such as high-explosive ammunition, were introduced. The impact that high-explosive bombs can have on personnel includes damage to the eardrum and lungs caused by explosion overpressure and penetrating wounds that can be received by fragments generated simultaneously with the explosion. Therefore, a high-explosive with COMP B explosives as its contents were set up, and an explosion protection theory investigation to calculate the degree of damage, numerical calculations and simulations were performed to verify the protection power. A numerical calculation revealed the maximum explosion overpressure on the protective wall when the high-explosive exploded and the penetration force of the fragment against a 50 mm-thick protective wall to be 77.74 kPa and 41.34 mm, respectively. In the simulation verification using AUTODYN, the maximum explosion overpressures affecting the firewall and personnel were 56.68 kPa and 18.175 kPa, respectively, and the penetration of fragments was 35.56 mm. This figure is lower than the human damage limit, and it was judged that the protective power of the barrier would be effective.

Target Localization Method based on Extended Kalman Filter using Multipath Time Difference of Arrival (다중경로 도달시간차이를 이용한 확장칼만필터 기반의 표적 위치추정 기법)

  • Cho, Hyeon-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.251-257
    • /
    • 2021
  • An underwater platform operating a passive sonar needs to acquire the target position to perform its mission. In an environment where sea-floor reflections exist, the position of a target can be estimated using the difference in the arrival time between the signals received through multipaths. In this paper, a method of localization for passive sonar is introduced, based on the EKF (Extended Kalman Filter) using the multipath time difference of arrival in underwater environments. TMA (Target Motion Analysis) requires accumulated measurements for long periods and has limitations on own-ship movement, allowing it to be used only in certain situations. The proposed method uses an EKF, which takes measurements of the time differences of the signal arrival in multipath environments. The method allows for target localization without restrictions on own-ship movement or the need for an observation time. To analyze the performance of the proposed method, simulation according to the distance and depth of the target was performed repeatedly, and the localization error according to the distance and water depth were analyzed. In addition, the correlation with the estimated position error was assessed by analyzing the arrival time difference according to the water depth.

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Analysis of Operation Efficiency in Private University Using the DEA (DEA를 활용한 국내 사립대학 운영 효율성 분석)

  • Bae, Young-Min;Han, Seung-Jo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.67-75
    • /
    • 2021
  • The structure of universities needs to be adjusted and reformed to cope with the decrease in admission resources and the quality of education due to the low birth rate and aging population. Such a policy is receiving much attention. To analyze the relative efficiency of private universities in Korea from the perspective of resource and performance, this study evaluated the efficiency of private university operation by applying a DEA(Data Envelopment Analysis) technique. The DEA measurements were compared with the diagnosis results of the department of education (Government) in 2018. The input and output variables used in the research analysis were utilized by the university's notification materials (public disclosure information). An analysis of the operational efficiency showed that 48% (12 universities) of the 25 DMUs (Decision Making Unit) were efficient for DEA-BCC models and that some of the capacity-building universities were operating efficiently. In addition, the DEA analysis found ways to improve inefficient groups through DEA-Additive results. This paper can be meaningful because it confirmed the relative efficiency of private universities and suggested improvement directions through the DEA method, which is characterized by the simultaneous consideration of various input and output factors. This will help apply the limited resources related to the input and output elements of each university.

A Study on the Methodology for Combat Experimental Testing of Future Infantry Units using Simulation (시뮬레이션을 활용한 미래 보병부대 전투실험)

  • Lim, Jong-Won;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Owing to the development of science technology, particularly the smart concept and defense policy factors of the 4th industry, military weapon systems are advanced, and the scientific and operational force is reduced dramatically. The aspect of the future war is characterized by the operation of troops with reduced forces from advanced and scientific weapon systems in an operational area that has expanded more than four times compared to the present. Reflecting on these situational factors, it is necessary to improve combat methods based on the changes in the battlefield environment and advanced weapon systems. In this study, to find a more efficient future combat method in a changing war pattern, this study applied the battle experiment methodology using Vision21 war game model, which is an analytical model used by the army. Finally, this study aimed to verify the future combat method and unit structure. Therefore, the scenario composition and experiment method that reflect the change in the ground operational environment and weapon system was first composed. Subsequently, an analysis method based on the combat effectiveness was applied to verify the effective combat performance method and unit structure of future infantry units.

Development trends of Solar cell technologies for Small satellite (소형위성용 태양전지 개발 동향 및 발전 방향)

  • Choi, Jun Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.310-316
    • /
    • 2021
  • Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.