• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.037 seconds

Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming (유무인기 협업 기반의 SEAD 임무 수행절차 분석)

  • Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.678-685
    • /
    • 2019
  • Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.

Velocity Aided Navigation Algorithm to Estimate Current Velocity Error (해조류 속도 오차 추정을 통한 속도보정항법 알고리즘)

  • Choi, Yun-Hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Inertial navigation system has navigation errors because of the error of inertial measurement unit (IMU) and misalignment over time. In order to solve this problem, aided navigation system is performed using global navigation satellite system (GNSS), speedometer, etc. The inertial navigation system equipped with underwater vehicle mainly uses speedometer and performed aided navigation because satellite signals do not pass through underwater. There are DVL, EM-Log, and RPM in the speedometer, and the sensors are applied according to the system environment. This paper describes velocity aided navigation using RPM of inertial navigation system operating in high speed and deep water environment. In addition, we proposes an algorithm to compensate the limit of RPM with straight direction and the current velocity error. There are results of monte-calo simulation to prove performance of the proposed algorithm.

A Study on Deport Maintenance Technology for Recycling Observation Window of the K1A1 Tank Commander's Primary Thermal Sight (K1A1 전차 전차장 열상조준경의 관측창 재생을 위한 창 정비기술 연구)

  • Choi, Myoungjin;Byun, Yongwan;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.89-94
    • /
    • 2019
  • K1A1 tank commander's primary thermal sight is a device that enables tank commanders to detect, identify, aim and track the target by observing targets in all directions during day, night and in situations of smokescreen and fog through $360^{\circ}$ rotation independent from the gunner's primary thermal sight and stabilizing the line of sight even under the vibrations occurring when the tank is standstill and moving. The main function of this device is to detect and process visible and thermal images and deliver the final images to the tank commander. One of the core parts to that end is the observation window (daytime/thermal image window). This core part is mounted at the entrance of the optical path for observing the target and plays the role of making visible light during the daytime and infrared light during the night pass through the target and transmitting the resultant images to the internal optical system of the tank commander's primary thermal sight. Such core parts have been selected as depot maintenance items so that they are replaced by new parts instead of being recycled when they are subjected to maintenance in most cases. That is, the military budget is wasted because such parts are replaced by new parts despite that they can be recycled for maintenance. Therefore, this study proposed a mounting tool for polishing and coating observation windows (daytime and thermal image window) using planar polishing equipment and DLC (Diamond-Like Carbon) coating equipment. In addition, this study presented an amendment (proposal) of the Depot Maintenance Work Request (DMWR) already published to verify the performance of recycled products including the establishment of inspection standards for recycling processes.

Removal of Clutter from Doppler Radar Signal to Measure Accurate Muzzle Velocity (도플러 레이더를 이용한 포구속도 계측 시 클러터 제거 방법)

  • Kim, Hyoung-rae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.142-150
    • /
    • 2019
  • Muzzle Velocity is one of the most important measurement items for evaluation of ammunition. The muzzle velocity is defined as the velocity when the projectile leaves the muzzle. Particularly, since the muzzle velocity is closely related to the performance of the propellant, precise measurement of muzzle velocity is required. Doppler radar is used to measure the muzzle velocity, but the quality of Doppler radar signal depends on the test site environment. In this paper, a method to remove the clutter that degrades the signal quality of Doppler radar by improving the structure of the test site and the signal processing method is suggested. For the application of the improved signal processing method, a program for acquiring Doppler radar's raw Doppler data was created. Statistical verification of the velocity data obtained through the improvement of the test site structure and signal processing method proved that the proposed method is effective for the removal of clutter as compared with the existing method.

Analysis of Causes PCB Failure for Collective Protection Equipment and Improvement of Quality (집단보호장비 내의 회로카드조립체 고장 원인 분석 및 품질 향상)

  • Pak, Se-Jin;Ki, Sang-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.87-92
    • /
    • 2019
  • This study is the analysis of causes of printed circuit board (PCB) in collective protection equipment failure and quality improvement. The equipment is a component of the weapon system currently in operation and serves to defend against enemy chemical and biological attack as well as heating and cooling functions. However, during operation in the military, fans of condensate assembly failed to operate. The cause of the failure is the burning of PCB. It was found that the parts were heated according to the continuous cooling operation under the high temperature environmental conditions. Accordingly, the electronic components exposed to high temperature were deteriorated and destroyed. To solve this problem, PCB apply to heatsink. The performance test of improved PCB has been completed. Futhermore system compatibility, positive pressure maintenance and noise test were performed. This improvement confirmed that no faults have occurred in PCB so far. Therefore, the quality of the equipment has improved.

Optimization of Voice Coil Motors for a Small Guided Missile Fin Actuator (소형 유도무기 날개 작동기용 보이스 코일 모터의 최적 설계)

  • Lee, Choong Hee;Kim, Gwang Tae;Lee, Byung Ho;Cho, Young Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2019
  • In this study, optimal design of direct-drive VCMs (Voice Coil Motor) for a missile fin actuator is carried out. The torque performance and the characteristics of the VCM are predicted by commercial electromagnetic analysis software, ANSYS Maxwell. The optimal design is obtained at the minimum and maximum actuating angles where the aerodynamic load acting on the fin is the largest in the operating range. The critical variables of the actuator is designed and the RSM (Response Surface Method) is used for the optimization. The response surface model consists of second-order functions and its experimental points are selected by a central composite design. This design is widely used for fitting a second-order response surface. The adjustment regression coefficients is computed for adequacy checking of the response surface model. Finally, the torque values obtained by the RSM and the ANSYS Maxwell are shown in good agreement.

A Malware Detection Method using Analysis of Malicious Script Patterns (악성 스크립트 패턴 분석을 통한 악성코드 탐지 기법)

  • Lee, Yong-Joon;Lee, Chang-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.613-621
    • /
    • 2019
  • Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.

Design of Sub-array Receiver for Active Phase Array Radar (능동위상배열 레이더 부배열 수신기 설계)

  • Yi, Hui-min;Kim, Do-hoon;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • Modern Radars are evolving into MFRs which can search multiple targets simultaneously and then track them. Additionally they should be able to avoid some external jamming signals. Applying to these MFRs, Antennas should be able to perform DBF including to not only real-time beam steering but also multi-beam forming simultaneously. And they can cancel the beam at the specific direction. In this paper, we describe the implementation of sub-array type antenna hardware which can be applying DBF. Also we propose the modified amplitude aperture distribution for suppressing the side lobe level and explain the sub-array receiver design with amplitude tapering. It consists in making the amplitude weighting in 2 steps. In order to compare two weighting cases, we investigate the G/T performance for the array antenna. At the conclusion, we make a comparative study for the dynamic range of every sub-array receiver and present the hardware implementation that is more advantageous for sub-array alignment and calibration in DBF.

Development of Ground System to Improve Link Reliability of Flight Termination System for Guided Missiles (유도무기 비행종단시스템의 통신 신뢰도 향상을 위한 지상국 시스템 개발)

  • Yoon, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.891-897
    • /
    • 2020
  • A flight termination system, which consists of ground and vehicle systems, forcibly terminates flight if it is deemed dangerous. In order to accomplish this, the system should maintain the link reliability above a certain level throughout the whole flight. However, the national proving ground for guided missiles could not fully meet that condition because of the gradually improving performance criteria. In this paper, we have analyzed the link budget for the flight termination system. Furthermore, we have designed and developed an emergency destruction command transmitter system, which is a ground system of the flight termination system, to provide the necessary link margin. Afterwards, we measured the received signal strength at the vehicle system and compared it with that of the existing transmitter system. We hereby confirmed that the link reliability of the flight termination system improved.

Denoising Autoencoder based Noise Reduction Technique for Raman Spectrometers for Standoff Detection of Chemical Warfare Agents (비접촉식 화학작용제 탐지용 라만 분광계를 위한 Denoising Autoencoder 기반 잡음제거 기술)

  • Lee, Chang Sik;Yu, Hyeong-Geun;Park, Jae-Hyeon;Kim, Whimin;Park, Dong-Jo;Chang, Dong Eui;Nam, Hyunwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.374-381
    • /
    • 2021
  • Raman spectrometers are studied and developed for the military purposes because of their nondestructive inspection capability to capture unique spectral features induced by molecular structures of colorless and odorless chemical warfare agents(CWAs) in any phase. Raman spectrometers often suffer from random noise caused by their detector inherent noise, background signal, etc. Thus, reducing the random noise in a measured Raman spectrum can help detection algorithms to find spectral features of CWAs and effectively detect them. In this paper, we propose a denoising autoencoder for Raman spectra with a loss function for sample efficient learning using noisy dataset. We conduct experiments to compare its effect on the measured spectra and detection performance with several existing noise reduction algorithms. The experimental results show that the denoising autoencoder is the most effective noise reduction algorithm among existing noise reduction algorithms for Raman spectrum based standoff detection of CWAs.