• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.174 seconds

A Study on a Combination Model Development for Counterfire Operation with Heterogeneous Weapon System (대화력전에 대한 이종 무기체계의 조합모델개발 연구)

  • Kim, Hanyoung;Kim, Seungcheon;Ro, Kwanghyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.62-69
    • /
    • 2016
  • This paper proposes to select Measure of Performance(MOP) for object attainment in the counterfire operation and deduce the reasonable combination of blue force's hitting resources satisfying MOP's optimal value and regression equation for the object achievement time. Also, in the study-methodological perspective, a series of procedures for drawing the regression equation from the real world is presented. Firstly the model was made by simplifying the weapon-system information of red force and blue force, then the time for object attainment was derived from its simulation. Simulating the model for the counterfire operation was divided into three phases-detection, decision and hitting. The probability method by applying the random numbers were used for detection, fixed constant numbers for decision and hitting. The simulation was repeatedly performed to get the minimum time for the object attainment against the fixed enemy, and it was estimated as the optimal value of simulation. From this result, the optimum combination of blue force's weapon system against the red force and finally, the regression equation were obtained by using the response surface analyzing method in MINITAB. Thereafter this equation was completely verified by using 'the 2-sample t-test.' As a result, the regression equation is suitable.

Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation (고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능)

  • Do, Jeonghyeon;Jeon, Changwoo;Nam, Duk-Hyun;Kim, Choongnyun Paul;Song, Young Buem;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Design of Hybrid Communication Structure for Video Transmission in Drone Systems (드론 영상 전송용 하이브리드 통신 구조의 설계)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.9-14
    • /
    • 2019
  • In modern society drones are actively utilized in the fields of security, defense, agriculture, communication and so on. Smart technology and artificial intelligence software have been developed with convergence, and the field of use is expected to expand further. On the point of the excellent performance of drones one of the essential technologies is the wireless communication that make the ground facility receive the video streaming obtained by the drones in the air. In the research the concept of communication region is proposed to cover the both the low altitude region for Wi-Fi communication and the high altitude region for LTE communication for the sake of video transmission. Also the hybrid communication structure is designed along the proposed concept and the proposed system is implemented as a communication system in the small size which can be mounted in a small size of drone. It is confirmed that the proposed system contains the effectiveness by showing the ability to successfully transmit HD video streaming in the range of 500 meters and the transfer time between two different communication systems is measured in 200msec by the experiments.

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape (무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석)

  • Noh, Sooyoung;Bae, Ji-Yeul;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

Extended Range of a Projectile Using Optimization of Body Shape (비행탄두 형상 최적화를 이용한 사거리 증대 연구)

  • Kim, Jinseok
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.49-55
    • /
    • 2020
  • A goal of improving projectile is to increasing achievable range. The shape of a projectile is generally selected on the basis of combined aerodynamics and structural considerations. The choice of body, nose and boattail shape has a large effect on aerodynamic design. One of the main design factors that affect projectile configuration is aerodynamic drag. The aerodynamic drag refers to the aerodynamic force that acts opposite to the relative motion of a projectile. An investigation was made to predict the effects of nose, boattail and body shapes on the aerodynamic characteristics of projectiles using a semi-empirical technique. A parametric study is conducted which includes different projectile geometry. Performance predictions of achievable range are conducted using a trajectory simulation model. The potential of extending the range of a projectile using optimization of projectile configuration is evaluated. The maximum range increase is achieved due to the combination of optimal body shapes.

A Practical Design and Implementation of Android App Cache Manipulation Attacks (안드로이드 앱 캐시 변조 공격의 설계 및 구현)

  • Hong, Seok;Kim, Dong-uk;Kim, Hyoungshick
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.205-214
    • /
    • 2019
  • Android uses app cache files to improve app execution performance. However, this optimization technique may raise security issues that need to be examined. In this paper, we present a practical design of "Android app cache manipulation attack" to intentionally modify the cache files of a target app, which can be misused for stealing personal information and performing malicious activities on target apps. Even though the Android framework uses a checksum-based integrity check to protect app cache files, we found that attackers can effectively bypass such checks via the modification of checksum of the target cache files. To demonstrate the feasibility of our attack design, we implemented an attack tool, and performed experiments with real-world Android apps. The experiment results show that 25 apps (86.2%) out of 29 are vulnerable to our attacks. To mitigate app cache manipulation attacks, we suggest two possible defense mechanisms: (1) checking the integrity of app cache files; and (2) applying anti-decompilation techniques.

Effect of Time-to-go Estimate to Impact Time Control Guidance Laws (충돌시간 제어 유도법칙에 대한 잔여비행시간 추정의 영향)

  • Kim, Mingu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.558-565
    • /
    • 2019
  • A lot of studies on the survivability of missiles have been widely studied, since the technology of modern warships equipped with state-of-the-art defense systems has been improved. The survivability of missiles can be improved by attacking a target simultaneously using multiple missiles. For this reason, impact time control guidance (ITCG) laws have been widely studied. This paper deals with the effect of time-to-go estimate to ITCG laws. In this paper, two kinds of time-to-go estimate are first introduced in two-dimensional and three-dimensional environment and then ITCG laws are derived using the time-to-go estimate. Numerical simulations are performed to analyze the performance of the designed ITCG laws and the effect of time-to-go estimate is discussed.

Research on an Engagement Level Underwater Weapon System Model with Neyman-Pearson Detector (Neyman-Pearson 표적 탐지기를 적용한 수중 무기체계 교전수준 모델 개발 연구)

  • Cho, Hyunjin;Kim, Wan-Jin;Kim, Sanghun;Yang, Hocheol;Lee, Hee Kwang
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2019
  • This paper introduces the simulation concepts and technical approach of underwater weapon system performance analysis simulator, especially focused on probabilistic target detection concepts. We calculated the signal excess (SE) value using SONAR equation, then derived the probability density function(PDF) for target presence($H_1$) or absence($H_0$) cases, respectively. With the Neyman-Pearson detector criterion, we got the probability of detection($P_D$) while satisfying the given probability of false alarm($P_{FA}$). At every instance of simulation, target detection is decided in the probabilistic perspective. With the proposed detection implementation, we improved the model fidelity so that it could support the tactical decision during the operation.

Study on Beamforming of Conformal Array Antenna Using Support Vector Regression (Support Vector Regression을 이용한 컨포멀 배열 안테나의 빔 형성 연구)

  • Lee, Kang-In;Jung, Sang-Hoon;Ryu, Hong-Kyun;Yoon, Young-Joong;Nam, Sang-Wook;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.868-877
    • /
    • 2018
  • In this paper, we propose a new beamforming algorithm for a conformal array antenna based on support vector regression(SVR). While the conventional least squares method(LSM) considers all sample errors, SVR considers errors beyond the given error bound to obtain the optimum weight vector, which has a sparse solution and the advantage of the minimization of the overfitting problem. To verify the performance of the proposed algorithm, we apply SVR to the experimentally measured active element patterns of the conformal array antenna and obtain the weights for beamforming. In addition, we compare the beamforming results of SVR and LSM.