• Title/Summary/Keyword: defense R&D test development

Search Result 176, Processing Time 0.023 seconds

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

Scramjet Experimental Techniques Using a Shock Tunnel (충격파 터널을 이용한 스크램제트 실험 기술)

  • Yang, Sungmo;Kim, Keunyeong;Chang, Eric Won Keun;Jin, Sangwook;Park, Gisu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.97-106
    • /
    • 2018
  • This paper summarizes the technical difficulties pertaining the double-compression ramp scramjet inlet model testing in a shock tunnel and their corresponding solutions. Four technical difficulties are identified: 1) test facility unstart, 2) flow disturbance and model damage due to the impact of diaphragm debris, 3) lack of fuel jet development due to multiple injection, and 4) short test time. After overcoming the identified technical difficulties, the improved results were confirmed through the results of shadowgraph images and shock tube end wall pressure.

A Study on Durability Verification of Seabed-Mounted Acoustic Sensor System (해저매설형 음향센서 시스템의 내구성 검증 방안에 대한 연구)

  • Shin, Jeung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • In this paper, a test is performed to verify the mechanical durability of acoustic sensor system mounted in seabed given test specification. High system durability is required for acoustic sensor system which is costly for installation process, and is affected with various tensional loads by installation equipments. So, it is necessary to verify the system durability including its performance or lifetime in mounted environments. The list of specified tests is mainly based on UJ QTS 200 and the system mostly satisfies the test specification for electrical characteristics.

Analytical and Experimental Comparison of the Velocity of a Supersonic Projectile in the Soft Recovery System (저감속 회수장비에서 초음속 시험탄 속도에 대한 이론적 및 실험적 비교 연구)

  • Song, Minsup;Kim, Jaehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.619-628
    • /
    • 2021
  • In order to compare numerical analyses made by Song and Kim needed for predicting gas and water filling with experimental results we conducted an experiment to recover a test projectile (43.7 kg with a 155 mm diameter) at a velocity of 775 m/s in a soft recovery system with a length of 179 m using pressurized gas and filled water. The soft recovery system consisting of a series of pressure tubes had a diaphragm, piston, and water plug for filling the pressurized gas and water. We installed a continuous wave Doppler radar system for velocity measurements of the test projectile travelling in the pressure tubes and pressure transducers for measuring the pressure in the soft recovery system. Continuous wave Doppler radar has the advantage of achieving real-time measurements of the velocity of a test projectile. The velocity-time curve of the test projectile, measured using the continuous wave Doppler radar, and the pressure profile were compared with the numerical analysis results. The experiment results show good agreement with the numerical analysis results based on the one-dimensional Euler equation with an HLL Riemann solver.

A Study on Optimizing the Clutter Rejection Capability for a High-Speed Scanning MTI-Pulse Radar (고속 스캔 MTI 펄스 레이더의 지형 클러터 제거 능력 최적화에 관한 연구)

  • Kim, Jong-Geon;Jang, Heon-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1077-1083
    • /
    • 2009
  • To reject the Doppler frequency spectrum dispersion of clutter caused by high-speed antenna rotation of MTI radar system due to terrain characteristics, signal processing parameters(MTI filter constant, M/N detector ration, K-factor and offset of CFAR) are adjusted for the optimal elimination of the ground clutter. For this investigation, logging equipment is designed and utilized for the collection of classified ground clutter data. Test case is devised through Matlab simulation for the classified analysis and optimization of clutter rejection. Then indoor radar test and outside test in accordance with terrain characteristics are repeatedly performed for the verification of the test. This whole process is through the evolutional development model and repeated for the optimization. Final result is that ground-clutter rejection capability is 5.6 times(7.5 dB) better than that of existing radar system.

A Development of Test Equipment for Thermal Protection Performance on Insulator used in Rocket Motor Chamber (연소관 내열고무의 내열성능평가를 위한 시험장치 개발)

  • Kang, YoonGoo;Park, JongHo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.32-36
    • /
    • 2016
  • Test equipment was designed and manufactured to evaluate thermal reaction characteristic of internal insulators of solid rocket motor. Test is allowed up to chamber pressure 2,500 psi, burn-time 100 s. A cross section of test sample part is quadrature, and various test samples can be comparable at the same time. Inner temperature of test sample can be measured by thermocouples during burning. Test was executed in condition of efficient average chamber pressure 1,000 psi, efficient burn-time 10 s and safety of equipment was confirmed. Basic data for understanding thermal characteristics of internal insulator, that is, pressure-time curve, temperature-time curve in the test sample, and thermal destruction thickness of test sample was gained successfully.

A Study on the V&V Process of M&S for the Test and Evaluation (시험평가용 M&S에 대한 V&V 프로세스 연구)

  • Park, Ju-Hye
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.397-404
    • /
    • 2019
  • When developing a weapon system, a T&E(Test and Evaluation) can be performed using M&S for the test items that cannot be evaluated in the real world. In this case, the VV&A activities are required to prove the credibility of M&S for the T&E. Recently, the use of M&S has been increasing as the R&D trends of weapon systems are becoming more advanced. Therefore, the VV&A activities are also increasing. The VV&A activities aim to verify, validate, and accredit that the simulation can represent a real system and ensure credibility regarding its purpose and intention of use. VV&A activities are divided into V&V and Accreditation. When performing VV&A in the ADD (Agency for Defense Development), the V&V activities are performed by a separate department of the ADD and the accreditation activities are performed in the DTAQ (Defense Agency for Technology and Quality). This paper proposes a V&V process for a T&E of M&S that has been performed in ADD. The process is used to verify and validate the documents and data generated during the development process according to the accreditation criteria, and provides objective data that can be used to judge whether the accreditation decision and acceptance criteria are met.

Artillery Error Budget Method Using Optimization Algorithm (최적화 알고리즘을 활용한 곡사포의 사격 오차 예측 기법)

  • An, Seil;Ahn, Sangtae;Choi, Sung-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2017
  • In R&D of artillery system, error budget method is used to predict artillery firing error without field firing test. The error budget method for artillery has been consistently developed but apply for practical R&D of the weapon system has been avoided because of lacks of error budget source information. The error budget source is composed of every detailed error components which affect total distance and deflection error of artillery, and most of them are difficult to be calculated or measured. Also with the inaccuracy of source information, simulated error result dose not reflect real firing error. To resolve that problem, an optimization algorithm is adopted to figure out error budget sources from existing filed firing test. The method of finding input parameter estimation which is commonly used in aerodynamics was applied. As an optimization algorithm, CMA-ES is used and presented in the paper. The error budget sources which are figured out by the presented method can be applied to compute ROC of new weapon systems and may contribute to an improvement of accuracy in artillery.

A Study on V-C Interoperability Test and Methodology of V-C Interoperation Analysis for Next Generation Maritime Warfighting Experimentation Systems (차세대 해상전투실험체계 구현을 위한 V-C 연동실험 및 연동분석 방법론 연구)

  • Shin, Hyunsoo;Kim, Junghoon;Choi, Bongwan;Yim, Dongsoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.84-94
    • /
    • 2016
  • The warfighting experimentation is the most important for the weapon acquisition process because the warfighting experimentation shall support the operation effectiveness as well as acquisition logicality. Therefore, ROK Navy is starting to set up the next generation warfighting experimentation systems. According to literature studies, there have been many studies regarding the interoperability of Simulators(Virtual) and Exercising models(Constructive), but not for studies regarding interoperability between Simulators(Virtual) and Analysis models(Constructive) that is the core component of next generation maritime warfighting experimentation systems. This study is dealing with the V-C(Analysis model) interoperability test and methodology of interoperation analysis. The purpose of the study is to provide the new analysis methodology through V-C(Analysis model) interoperation, which can be applied for the concept of operations(CONOPS) of next generation maritime warfighting experimentation systems. In addition to that, the study validates the suggested analysis methodology by the case study of a naval operation.

Mechanical Isolation Method for an Air Intake Duct with Vertical Temperature Gradient (수직 온도구배를 갖는 공기 흡입 덕트의 기계적 격리기법)

  • Jung, Chihoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2016
  • In a Direct Connect(DC) mode altitude engine test, a labyrinth seal is set up between an air intake duct and an engine. The labyrinth seal plays a key role in mechanically isolating them, which contributes to the accurate measurement of thrust and the other component forces. However, when high vertical temperature gradient is generated in the supplied air in the duct, the isolation breaks down. In this paper, a labyrinth seal control device is designed and installed in an effort to eliminate the issue. Test result shows the device successfully gets rid of the contact problem even when high vertical temperature gradient is produced.