• Title/Summary/Keyword: defect rate

Search Result 895, Processing Time 0.022 seconds

개심술에 관한 연구1979년도 320례 분석

  • 이영균
    • Journal of Chest Surgery
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1980
  • In 1979 during the period of about 10 months 320 cases of open heart surgery were done in Seoul National University Hospital. There were 220 Congenital anomaly cases consisting of 113 acyanotic and 107 cyanotic varieties, and 1 O0 acquired cardiac lesions. Out of 100 acquired lesions 96 were valvular cues. Among 97 valve replacement cases 3 were Ebstein anomaly treated with plication and tricuspid valve replacement. Operative mortality rate for congenital anomaly was 10.6%, with 2.7% for acyanotic and 22.4% for cyanotic group. For acquired lesions over all operative mortality was 7%. Tetralogy of Fallot, ventricular septal defect, and atrial septal defect were the 3 main congenital anomalies, with 88 cues, 69 cases, and 27 cues respectively. In 61 simple ventricular septal defect without other anomalies operative mortality rate was 1.6%, in 27 atrial septal defect no death and, in tetralogy of Fallot 12.2%. Among 69 ventricular septal defect cases 19[27.5%] type I VSDs, after Kirklin-Becu classification, were found, rather high relative incidence of type I compared with Caucasian patients. Among 97 valve replacement cases 20 double valves were replaced-11 mitral with aortic and 9 mitral with tricuspid valves. Over all operative mortality rate for valve replacement was 8.2% with 3.3% in 61 mitral valve replace-merit. The over all operative mortality rate for 320 open heart surgery cases was 10.6%. Bubble type oxygenator and xenograft bioprosthetic valves were utilized In almost all cases.

  • PDF

Development of Automated Surface Inspection System using the Computer V (컴퓨터 비젼을 이용한 표면결함검사장치 개발)

  • Lee, Jong-Hak;Jung, Jin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.668-670
    • /
    • 1999
  • We have developed a automatic surface inspection system for cold Rolled strips in steel making process for several years. We have experienced the various kinds of surface inspection systems, including linear CCD camera type and the laser type inspection system which was installed in cold rolled strips production lines. But, we did not satisfied with these inspection systems owing to insufficient detection and classification rate, real time processing performance and limited line speed of real production lines. In order to increase detection and computing power, we have used the Dark Field illumination with Infra_Red LED, Bright Field illumination with Xenon Lamp, Parallel Computing Processor with Area typed CCD camera and full software based image processing technique for the ease up_grading and maintenance. In this paper, we introduced the automatic inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms. As a result of experiment, under the situation of the high speed processed line(max 1000 meter per minute) defect detection is above 90% for all occurred defects in real line, defect name classification rate is about 80% for most frequently occurred 8 defect, and defect grade classification rate is 84% for name classified defect.

  • PDF

A Study on Sensor Data Analysis and Product Defect Improvement for Smart Factory (스마트 팩토리를 위한 센서 데이터 분석과 제품 불량 개선 연구)

  • Hwang, Sewong;Kim, Jonghyuk;Hwangbo, Hyunwoo
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.95-103
    • /
    • 2018
  • In recent years, many people in the manufacturing field have been making efforts to increase efficiency while analyzing manufacturing data generated in the process according to the development of ICT technology. In this study, we propose a data mining based manufacturing process using decision tree algorithm (CHAID) as part of a smart factory. We used 432 sensor data from actual manufacturing plant collected for about 5 months to find out the variables that show a significant difference between the stable process period with low defect rate and the unstable process period with high defect rate. We set the range of the stable value of the variable to determine whether the selected final variable actually has an effect on the defect rate improvement. In addition, we measured the effect of the defect rate improvement by adjusting the process set-point so that the sensor did not deviate from the stable value range in the 14 day process. Through this, we expect to be able to provide empirical guidelines to improve the defect rate by utilizing and analyzing the process sensor data generated in the manufacturing industry.

Analysis of Defect Repair Cost by Work Type based on Defect Inspection of Apartments (공동주택의 하자진단에 기초한 공종별 하자보수비용의 분석)

  • Lee, Jin-Eung;Kim, Byung-Yun;Jeong, Byung-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.491-500
    • /
    • 2015
  • This study investigated defect status by work type, based on the report data of defect inspection results, acquired by consumers' request to safety inspection agencies, before the expiration of legal defect repair warranty period. In fact, the data was not acquired by centering on suppliers, namely, construction companies in relation with the defects becoming causes to increase construction cost of apartments. This study aims to provide objective and basic data for quality improvement at construction stage and for solution to defect disputes. The study results are presented below: (1) The number of defect cases occurring from architectural work among total work types were 1,986, defect occurrence rate was 62.5%, and defect repair cost was KRW $25,851/m^2$, which stood at 78.2% of the total work types. This means the defect occurrence rate and defect repair cost in architectural work are bigger than those of other work types. (2) Major defects in architectural work were revealed in the following order: cracks from frame work, inferior interior finishing work, inferior finishing work of plaster/masonry works, water leak/damage from waterproof work and withering/omission from landscape work. The total repair cost of the major selected defects was KRW $12,220/m^2$, and was analyzed to take up 37% of the total defect repair cost.

Effect of Heat Input Rate on the Weld Defect Formation during High Frequency Electric Resistance Welding (고주파 전기 저항 용접부의 용접 결함 발생 빈도에 미치는 용접 입열 속도의 영향)

  • 조윤희;김충명;김용석
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.201-203
    • /
    • 2000
  • In this study, effect of welding parameters on the defect density in the weldments produced by high frequency electric resistance welding process. The defect density measured by X-ray radiography showed a W-type curve as a function of heat input rate. The mechanisms of the such behavior were discussed based on the chemical compositions of the oxides formed at the weldments.

  • PDF

A Study on the Time Series Analysis of Defect Maintenance Cost in Apartment House according to the Actual Use Data (실적자료에 의한 공동주택 하자보수비용의 시계열적 분석)

  • Song, Dong-Hyun;Lee, Sang-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.177-178
    • /
    • 2011
  • Recently a great deal of people are taking legal action against the housing provider due to the defects of their Apartment house. And most of the housing companies are spending a huge amount of expenses and efforts to keep their brand value. This essay will carry out time series analysis the 20 housing district which are constructed by huge construction companies. This analysis itemised by metropolitan area(Seoul) and others to keep the degree of reliability, and converted future defect maintenance cost into current cost applied by discount rate to figure out suitability of defect maintenance cost. Even though, this essay is not able to represent standard of defect maintenance cost due to the insufficiency of record, while it will be assisted as a referance when long-term record of time series is estabilished.

  • PDF

Analysis of Abnormal Signals for Induction Motor according to Operating Status of Fire Pumps (소방펌프의 운전상태에 따른 유도전동기의 이상 신호 분석)

  • Ku, Bonhyu;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.20-27
    • /
    • 2022
  • This article aims to develop an algorithm that detects fire pump defects by analyzing the current signals of an induction motor, which are triggered by changes in the flow rate and pressure of multistage volute pumps that are used for fire services. The operational status of the pumps was categorized into three: first, normal operation; second, a defect that is caused by a change in the current value; and third, a defect occasioned by a change in current, pressure, and flow rate. When a fire pump was in normal operation, the motor's operating current was measured between 5.06 A and 6.9 A, the flow rate was estimated at 0-0.27 m3/min, and the pressure ranged from 0 to 0.47 MPa. In the event that a defect was caused by an abnormal current value in the motor, it was attributed to the pump's adherence. Furthermore, if there was no source of water, the defect was considered to have been induced by phase-loss operation, no-load operation, or run-stop operation, with the current value of each scenario being measured at > 52.8 A, < 4.13 A, > 45.15 A, and < 3.8 A, respectively, placing its overall range between 0 and 50 A. The sources of defects were detected based on an analysis of the flow rate, pressure, and current, which represent the following causes: air inflow into the casing, inadequate suction of water, and reverse-phase operation, respectively. Each cause entailed the following values: when air seeped into the casing, the pressure was measured at 0.24 MPa irrespective of changes in the flow rate; when there was inadequate suction of water, the pressure was recorded between 0 and 0.05 MPa despite changes in the flow rate; and when the power line's reverse-phase loss was the cause of the defect, the pressure was measured at 0.33 MPa for a flow rate of 0 L/min, and a higher flow rate decreased the pressure to nearly 0 MPa. The results of this study will enable engineers to develop a pump defect detection algorithm that is based on an analysis of current, and this algorithm will facilitate the execution of a program that will control a fire pump defect detection system.

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.

A Study on the Artificial Defect Sensitivity of Fatigue Limit in Austempered Ductile Iron (오스템퍼링처리한 구상흑연주철에서 인공결함에 대한 피로한도 민감도에 관한 연구)

  • Kim, M.G.;Kim, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.215-220
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the artificial defect sensitivity of fatigue limit in annealed and austempered ductile irons. Artificial defect(hole, diameter${\leq}0.4mm$) machined on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iron as compared with annealed. As a result of investigation on $\sqrt{area}$ c which is the critical artificial defect size. $\sqrt{area}$ c of austempered ductile iron is larger than that of annealed. This means that the crack initiation at artificial defect in austempered ductile iron is more difficult in comparison with annealed. In case that the $\sqrt{area}$ c of artificial defect and graphite nodule are same, the rate of crack initiation for graphite nodule is higher than that of artificial defect.

  • PDF

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.