• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.03 seconds

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Automatic Defect Detection and Classification Using PCA and QDA in Aircraft Composite Materials (주성분 분석과 이차 판별 분석 기법을 이용한 항공기 복합재료에서의 자동 결함 검출 및 분류)

  • Kim, Young-Bum;Shin, Duk-Ha;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2014
  • In this paper, we propose a ultra sound inspection technique for automatic defect detection and classification in aircraft composite materials. Using local maximum values of ultra sound wave, we choose peak values for defect detection. Distance data among peak values are used to construct histogram and to determine surface and back-wall echo from the floor of composite materials. C-scan image is then composed through this method. A threshold value is determined by average and variance of the peak values, and defects are detected by the values. PCA(principal component analysis) and QDA(quadratic discriminant analysis) are carried out to classify the types of defects. In PCA, 512 dimensional data are converted into 30 PCs(Principal Components), which is 99% of total variances. Computational cost and misclassification rate are reduced by limiting the number of PCs. A decision boundary equation is obtained by QDA, and defects are classified by the equation. Experimental result shows that our proposed method is able to detect and classify the defects automatically.

Implementation of the high speed signal processing hardware system for Color Line Scan Camera (Color Line Scan Camera를 위한 고속 신호처리 하드웨어 시스템 구현)

  • Park, Se-hyun;Geum, Young-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1681-1688
    • /
    • 2017
  • In this paper, we implemented a high-speed signal processing hardware system for Color Line Scan Camera using FPGA and Nor-Flash. The existing hardware system mainly processed by high-speed DSP based on software and it was a method of detecting defects mainly by RGB individual logic, however we suggested defect detection hardware using RGB-HSL hardware converter, FIFO, HSL Full-Color Defect Decoder and Image Frame Buffer. The defect detection hardware is composed of hardware look-up table in converting RGB to HSL and 4K HSL Full-Color Defect Decoder with high resolution. In addition, we included an image frame for comprehensive image processing based on two dimensional image by line data accumulation instead of local image processing based on line data. As a result, we can apply the implemented system to the grain sorting machine for the sorting of peanuts effectively.

Analysis of Defect Signals Inside Glass Fiber Reinforced Polymer Through Deconvolution of Terahertz Wave (테라헤르츠파의 디컨벌루션을 통한 유리섬유 복합재 내부 결함 신호 분석)

  • Kim, Heon-Su;Park, Dong-Woon;Kim, Sang-Il;Lee, Jong-Min;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.8-12
    • /
    • 2022
  • Analysis of defect signals inside glass fiber reinforced polymer (GFRP) was conducted through deconvolution of terahertz (THz) wave. The GFRP specimen with internal defects was manufactured and the THz signal was measured through the reflection mode of the Terahertz Time-Domain Spectroscopy (THz-TDS) system. For deconvolution of the measured THz signal, the peak position of the THz signal was amplified through Normalized Cross Correlation (NCC) of the incident and detected THz signals. The position and intensity of the amplified peak were extracted as impulse, and the extracted signal of the impulse position was removed from the THz original signal. By repeating the process, the critical impulses, which represent boundary of the specimen, were derived. The deconvolution process was verified by confirming that the original THz signal without noise can be restored through the convolution of the critical impulses and the incident signal. From the derived critical impulses, the thickness of the internal defect in the GFRP was calculated through the detection time of impulses within 15 ㎛ accuracy.

The effect of deep level defects in SiC on the electrical characteristics of Schottky barrier diode structures (깊은 준위 결함에 의한 SiC SBD 전기적 특성에 대한 영향 분석)

  • Lee, Geon-Hee;Byun, Dong-Wook;Shin, Myeong-Cheol;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2022
  • SiC is a power semiconductor with a wide bandgap, high insulation failure strength, and thermal conductivity, but many deep-level defects. Defects that appear in SiC can be divided into two categories, defects that appear in physical properties and interface traps that appear at interfaces. In this paper, Z1/2 trap concentration 0 ~ 9×1014 cm-3 reported at room temperature (300 K) is applied to SiC substrates and epi layer to investigate turn-on characteristics. As the trap concentration increased, the current density, Shockley-read-Hall (SRH), and Auger recombination decreased, and Ron increased by about 550% from 0.004 to 0.022 mohm.

Predicting the Morton Effect in a Steam Turbine with Sensitivity Vector (민감도 벡터를 이용한 스팀 터빈의 Morton Effect 발생 예측)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Junho Suh;Shinhun Kang;Seryong Kim
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.39-46
    • /
    • 2024
  • The Morton effect (ME) is an instability phenomenon occurring in rotating machineries supported by fluid film bearings and is induced by the thermal deformation of the overhung mass, which is a part of the rotating shaft. Herein, we describe the ME during the high-speed balancing test of a 20 MW class steam turbine. Additionally, to predict the rotating speed at which the ME occurs, we apply the sensitivity vector theory for the steam turbine. During the operation of the steam turbine, we observe a continuous increase in vibration and hysteresis near the rated speed, which is typical of the ME. Increasing the temperature of the lubricating oil supplied to the bearings from 40 to 60℃ suppresses the occurrence of the ME. The rotordynamic analysis for the steam turbine suggests the existence of a mode in which the overhung mass undergoes significant deformation near the rated speed, and we presume that such a mode will increase the occurrence of the ME. The predicted rotating speed of ME occurrence, obtained through the sensitivity vector method, correlates with the test results. Moreover, increasing the temperature of the supplied lubricating oil mitigates the occurrence of ME by reducing the sensitivity between the temperature deviation vector and unbalance mass vector.

Analysis of Major Factors of Window Work in Construction Phase Considering Recurrence of Defects in the Maintenance Phase (유지관리단계의 하자 재발생을 고려한 창호공사 시공단계의 중점관리요소 분석)

  • Jeong, U Jin;Kim, Dae Young;Lim, Jeeyoung;Park, Hyun Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.653-664
    • /
    • 2021
  • As the construction standards for energy-saving eco-friendly housing have recently been strengthened, the proportion of window work has increased with the demand for high-efficiency housing. Windows have high frequency of use, and there is the potential for many defects to occur depending on the characteristics of construction. According to a government agency's survey of defects in public rental apartment housing, defects in the windows work accounted for the highest portion of complaints received. Accordingly, related previous studies were considered, and it was found that the existing studies in Korea lacked research that reflected the construction characteristics of window work and the importance of maintenance. In addition, existing overseas studies considered both the constructor and the resident's position, considering the cost aspect together, and showed a trend of structuring the relationship between defects and causes. Therefore, this study will analyze the causes of defects that can occur in the construction phase of the windows work, reflect the construction characteristics, and derive major factors that consider the importance of maintenance based on the possibility of recurrence after repairing defects. Ultimately, this research will contribute to preventing defects in the construction phase and reducing maintenance costs by presenting a highly effective defect management plan through selecting the major factors for each defect type that can be intuitively judged by analyzing the causal relationship between defect types and causes.

Investigating Defect Types and Causative Factors in the Seismic Retrofitting of Educational Facilities (학교시설 내진보강공사 시 발생하는 하자 유형 및 하자 발생 요인 연구)

  • Kim, Moon Sik;Jung, Dae Gyo;Park, Hyun Jung;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 2024
  • This research addresses the types and causes of defects in seismic retrofitting projects of school facilities, which, following the Gyeongju and Pohang earthquakes in September 2016 and November 2017 respectively, have been identified as having comparatively lower seismic resilience among public buildings. The incidence of seismic retrofitting has notably increased in the subsequent years, raising concerns about the potential for defects arising from these efforts. The government has committed to enhancing the seismic resilience of all public facilities by 2035, with a specific focus on completing upgrades for educational establishments by 2029. Although prior investigations have explored construction defects in school facilities, there exists a gap in research specifically targeting defects within seismic retrofitting processes. Thus, this study aims to catalog the defects associated with seismic retrofitting efforts and analyze their underlying causes to identify crucial management strategies for defect mitigation. Furthermore, by examining the interplay between defect types and their causative factors, the study seeks to pinpoint essential management practices that could preempt defects during the construction phase, ultimately aiding in the reduction of future maintenance expenditures.