• 제목/요약/키워드: default voting

검색결과 7건 처리시간 0.019초

엔트로피와 Default Voting을 이용한 협력적 필터링에서의 사용자 유사도 측정 (User Simility Measurement Using Entropy and Default Voting Prediction in Collaborative Filtering)

  • 조선호;김진수;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.115-117
    • /
    • 2001
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다. 협력적 필터링 기술은 사용자의 취향에 맞는 아이템을 예측하여 추천하며, 비슷한 선호도를 가진 다른 사용자들과의 상관관계를 구하기 위하여 일반적으로 피어슨 상관계수를 많이 이용한다. 그러나, 피어슨 상관계수를 이용한 방법은 사용자가 평가를 한 아이템이 있을 때에만 상관관계를 구할 수 있다는 단점과 예측의 정확성이 떨어진다는 단점을 가지고 있다. 따라서, 본 논문에서는 피어슨 상관관계 기반 예측 기법을 보완하여 보다 정확한 사용자 유사도를 구하는 방법을 제안한다. 제안된 방법에서는 사용자들을 대상으로 사용자가 평가를 한 아이템의 선호도를 사용해서 엔트로피를 적용하였고, 사용자가 선호도를 표시하지 않은 상품에 대해서는 Default Voting 방법을 이용하여 보다 정확한 헙력적 필터링 방식을 구현하였다.

  • PDF

협력적 여과 시스템에서 사용자 변동 계수를 이용한 기본 평가간 예측 (Default Voting using User Coefficient of Variance in Collaborative Filtering System)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1111-1120
    • /
    • 2005
  • 협력적 여과 시스템에서 대부분의 사용자들은 모든 아이템에 대하여 선호도를 평가하지 않으므로 인하여 사용자~아이템 행렬은 희박성을 나타내며, 또한 사용자가 평가하지 않은 아이템으로부터 결측치가 발생한다. 일반적인 결측치 예측 방법은 특정 대상의 사용자가 평가하지 않은 결측치를 이 사용자와 비슷한 흥미를 갖는 사용자들의 평가값을 기반으로 예측하나, 기본 평가값 예측 방법은 사용자-아이템 렬의 결측치를 특정 사용자가 아닌 전체 사용자에 대하여 예측한다. 기본 평가값 예측 방법 중 가장 많이 사용되는 방법은 아이템 평균이나 사용자 평균을 이용한 방법이다. 그러나 이 방법은 아이템이나 사용자의 특성, 또한 데이타 집합의 분포 특성을 전혀 고려하지 않는다는 문제점을 갖는다. 본 논문에서는 이러한 문제점을 해결하기 위하여 데이타 집합에 나타난 사용자의 변동 계수를 이용하는 기본 평가값 예측방법을 제안한다. 제안한 방법에서는 수식을 이용하여 자동적으로 사용자 변동 계수의 임계값을 선택하고, 그 임계값에 따라 사용자 평균에서 아이템 평균으로 전환하여 사용자들의 결측치에 대한 기본 평가값을 결정한다. 그러나 사용자 변동 계수들의 분포 정보로 인하여 사용자 변동 계수와 임계갈이 항상 일정한 관계를 유지하는 것이 아니므로, 제안된 방법에서는 임계값을 선택하기 위하여 사용자 변동 계수의 평균과 변동 계수의 분포 정보를 병합한다. 제안된 방법은 사용자가 영화에 대하여 평가한 MovieLens 데이타 집합을 대상으로 평가되었으며, 기존의 기본 평가값 예측 방법보다 그 성능이 우수함을 보인다.

대표 속성을 이용한 최적 연관 이웃 마이닝 (Optimal Associative Neighborhood Mining using Representative Attribute)

  • 정경용
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.50-57
    • /
    • 2006
  • 최근 정보 기술의 발전에 따라 다양하고 폭넓은 정보들이 디지털 형태로 빠르게 생산 및 배포되고 있다. 사용자가 이러한 정보과잉 속에서 자신이 원하는 정보를 단시간 내에 검색하는 것은 그리 쉬운 일이 아니다. 따라서 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였으며, 더 나아가 사용자가 원하는 아이템을 예측하고 추천해주고 있으며 이를 위해 협력적 필터링을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 본 연구는 정보의 속성에 대한 사용자의 선호도를 고려하지 않은 문제를 개선하기 위하여 연관 이웃 마이닝을 사용하여 대표속성에 대한 연관 사용자의 선호도를 협력적 필터링에 반영하였다. 연관 이웃 마이닝은 선호도에 가장 크게 영향을 미치는 속성을 추출하여 유사한 성향을 가진 연관 사용자를 군집한다. 제안된 방법은 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 nearest neighbor model과 K-means 군집보다 그 성능이 우수함을 보인다.

개인화 추천 시스템의 예측 정확도 향상을 위한 사용자 유사도 가중치에 대한 비교 평가 (Comparative Evaluation of User Similarity Weight for Improving Prediction Accuracy in Personalized Recommender System)

  • 정경용;이정현
    • 전자공학회논문지CI
    • /
    • 제42권6호
    • /
    • pp.63-74
    • /
    • 2005
  • 전자상거래에서 최근 대부분의 개인화된 추천 시스템들은 협력적 필터링 기술을 적용하고 있다. 이 방법은 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 이때 일반적으로 피어슨 상관계수를 많이 사용한다. 그러나 이 방법은 두 사용자가 공통으로 선호도를 평가한 아이템들이 있을 때만 상관관계를 계산할 수 있으므로 예측의 정확도는 떨어진다. 사용자 유사도 가중치는 사용자의 성향에 맞는 아이템을 예측하는 경우 뿐만 아니라 개인화된 추천 시스템의 성능에 영향을 미칠 수 있다. 본 논문에서는 정보검색 분야의 벡터 유사도, 엔트로피, 역 사용자 빈도, 기본 선호도 평가를 적용하여 유사도 가중치 공식에 대해서 살펴보고, 추천 시스템의 예측 정확도 향상에 대해서도 실험을 통해 확인해 보았다. 실험 결과는 엔트로피를 이용한 유사도 가중치에 기본 선호도 평가를 결합하는 방법이 가장 성능이 우수함을 알 수 있다.

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형 (Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection)

  • 문건두;김경재
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.241-265
    • /
    • 2023
  • 기업의 부실 예측 모델은 기업의 재무 상태를 객관적으로 모니터링하는 데 필수적인 도구 역할을 한다. 적시에 경고하고 대응 조치를 용이하게 하며 파산 위험을 완화하고 성과를 개선하기 위한 효과적인 관리 전략을 수립할 수 있도록 지원한다. 투자자와 금융 기관은 금융 손실을 최소화하기 위해 부실 예측 모델을 이용한다. 기업 부실 예측을 위한 인공지능(AI) 기술 활용에 대한 관심이 높아지면서 이 분야에 대한 광범위한 연구가 진행되고 있다. 해석 가능성과 신뢰성이 강조되며 기업 부실 예측에서 설명 가능한 AI 모델에 대한 수요가 증가하고 있다. 널리 채택된 SHAP(SHapley Additive exPlanations) 기법은 유망한 성능을 보여주었으나 변수 수에 따른 계산 비용, 처리 시간, 확장성 문제 등의 한계가 있다. 이 연구는 전체 데이터 세트를 사용하는 대신 부트스트랩 된 데이터 하위 집합에서 SHAP 값을 평균화하여 변수 수를 줄이는 새로운 변수 선택 접근법을 소개한다. 이 기술은 뛰어난 예측 성능을 유지하면서 계산 효율을 향상시키는 것을 목표로 한다. 해석 가능성이 높은 선택된 변수를 사용하여 랜덤 포레스트, XGBoost 및 C5.0 모델을 훈련하여 분류 결과를 얻고자 한다. 분류 결과는 고성능 모델 설계를 목표로 soft voting을 통해 생성된 앙상블 모델의 분류 정확성과 비교한다. 이 연구는 1,698개 한국 경공업 기업의 데이터를 활용하고 부트스트래핑을 사용하여 고유한 데이터 그룹을 생성한다. 로지스틱 회귀 분석은 각 데이터 그룹의 SHAP 값을 계산하는 데 사용되며, SHAP 값 평균은 최종 SHAP 값을 도출하기 위해 계산된다. 제안된 모델은 해석 가능성을 향상시키고 우수한 예측 성능을 달성하는 것을 목표로 한다.

보건산업에서 협력적 필터링을 이용한 통증 간호중재 지원 방법 (Pain Nursing Intervention Supporting Method using Collaborative Filtering in Health Industry)

  • 류현;조선문;정경용
    • 한국콘텐츠학회논문지
    • /
    • 제11권7호
    • /
    • pp.1-8
    • /
    • 2011
  • 현대사회는 인터넷과 IT융합기술의 발달로 정보의 양이 급속도로 늘어나고 있으며, 이로 인하여 많은 데이터 속에 원하는 정보를 용이하게 획득하거나 검색하는 기술도 발전되고 있다. 의료 관련 시스템통합 또한 다양하게 구축 되어 정보의 누적량이 비약적으로 증가하고 있으나 구축된 자료를 활용한 간호활동의 정보제공 및 지원 내용은 미흡한 실정으로 특히 통증의 중재에 관한 판단은 간호사 개인의 경험적 판단에 의존하게 되는 것이 현실로서 대체적으로 주관적 판단이 내려지게 된다. 본 논문에서는 기존의 의료관련 데이터를 활용, 추출하고 협력적 필터링을 이용한 통증 간호중재 지원 방법론을 제안한다. 제안하고자 하는 협력적 필터링은 유사한 선호도를 기반으로 관련도가 높은 아이템을 추출하는 방법으로 사용자 기반의 협력적 필터링을 이용한 선호도 예측 방법은 피어슨 상관 계수에 의해 사용자 유사도를 구하고, 사용자의 선호도를 기반으로 이웃 선정방법을 사용한다.