• 제목/요약/키워드: deep-learning algorithm

검색결과 1,190건 처리시간 0.024초

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

크라우드 소싱 기반 딥러닝 선호 학습을 위한 쌍체 비교 셋 생성 (Generating Pairwise Comparison Set for Crowed Sourcing based Deep Learning)

  • 유기현;이동기;이창우;남광우
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.1-11
    • /
    • 2022
  • 딥러닝 기술의 발전에 따라 학습을 통해 선호도 랭킹 추정을 하기 위한 다양한 연구 개발이 진행되고 있으며, 웹 검색, 유전자 분류, 추천 시스템, 이미지 검색 등 여러 분야에 걸쳐 이용되고 있다. 딥러닝 기반의 선호도 랭킹을 추정하기 위해 근사(approximation) 알고리즘을 이용하는데, 이 근사 알고리즘에서 적정한 정도의 정확도를 보장할 수 있도록 모든 비교 대상에 k번 이상의 비교셋을 구축하게 되며, 어떻게 비교셋을 구축하느냐가 학습에 영향을 끼치게 된다. 이 논문에서는 크라우드 소싱 기반의 딥러닝 선호도 측정을 위한 쌍체 비교 셋을 생성하는 새로운 알고리즘인 k-disjoint 비교셋 생성 알고리즘과 k-체이닝 비교셋 생성 알고리즘을 제안한다. 특히 k-체이닝 알고리즘은 기존의 원형 생성 알고리즘과 같이 데이터 간의 연결성을 보장하면서도 안정적인 선호도 평가를 지원할 수 있는 랜덤적 성격도 함께 가지고 있음을 실험에서 확인하였다.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • 한국인공지능학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

A Study on the Efficacy of Edge-Based Adversarial Example Detection Model: Across Various Adversarial Algorithms

  • Jaesung Shim;Kyuri Jo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.31-41
    • /
    • 2024
  • 딥러닝 모델(Deep Learning Model)은 컴퓨터 비전(Computer Vision) 분야의 이미지(Image) 분류 및 객체 탐지와 같은 작업에서 뛰어난 성과를 보이며, 실제 산업 현장에서 다양하게 활용되고 있다. 최근 다양한 알고리즘(Algorithm)의 적대적 예제를 이용하여 딥러닝 모델의 취약성을 지적하며, 강건성 향상 방안을 제시하는 연구들이 활발하게 진행되고 있다. 적대적 예제는 오분류를 유도하기 위해 작은 노이즈(Noise)가 추가된 이미지로서, 딥러닝 모델을 실제 환경에 적용 시 중대한 위협이 될 수 있다. 본 논문에서는 다양한 알고리즘의 적대적 예제를 대상으로 에지 학습 분류 모델의 강건성 및 이를 이용한 적대적 예제 탐지 모델의 성능을 확인하고자 하였다. 강건성 실험 결과, FGSM(Fast Gradient Sign Method) 알고리즘에 대하여 기본 분류 모델이 약 17%의 정확도를 보였으나, 에지(Edge) 학습 모델들은 60~70%대의 정확도를 유지하였고, PGD(projected gradient descent)/DeepFool/CW(Carlini-Wagner) 알고리즘에 대해서는 기본 분류 모델이 0~1%의 정확도를 보였으나, 에지 학습 모델들은 80~90%의 정확도를 유지하였다. 적대적 예제 탐지 실험 결과, FGSM/PGD/DeepFool/CW의 모든 알고리즘에 대해서 91~95%의 높은 탐지율을 확인할 수 있었다. 본 연구를 통하여 다양한 적대적 알고리즘에 대한 방어 가능성을 제시함으로써, 컴퓨터 비전을 활용하는 여러 산업 분야에서 딥러닝 모델의 안전성 및 신뢰성 제고를 기대한다.

제조 공정 결함 탐지를 위한 MixMatch 기반 준지도학습 성능 분석 (Performance Analysis of MixMatch-Based Semi-Supervised Learning for Defect Detection in Manufacturing Processes)

  • 김예준;정예은;김용수
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.312-320
    • /
    • 2023
  • Recently, there has been an increasing attempt to replace defect detection inspections in the manufacturing industry using deep learning techniques. However, obtaining substantial high-quality labeled data to enhance the performance of deep learning models entails economic and temporal constraints. As a solution for this problem, semi-supervised learning, using a limited amount of labeled data, has been gaining traction. This study assesses the effectiveness of semi-supervised learning in the defect detection process of manufacturing using the MixMatch algorithm. The MixMatch algorithm incorporates three dominant paradigms in the semi-supervised field: Consistency regularization, Entropy minimization, and Generic regularization. The performance of semi-supervised learning based on the MixMatch algorithm was compared with that of supervised learning using defect image data from the metal casting process. For the experiments, the ratio of labeled data was adjusted to 5%, 10%, 25%, and 50% of the total data. At a labeled data ratio of 5%, semi-supervised learning achieved a classification accuracy of 90.19%, outperforming supervised learning by approximately 22%p. At a 10% ratio, it surpassed supervised learning by around 8%p, achieving a 92.89% accuracy. These results demonstrate that semi-supervised learning can achieve significant outcomes even with a very limited amount of labeled data, suggesting its invaluable application in real-world research and industrial settings where labeled data is limited.

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

Image Reconstruction Method for Photonic Integrated Interferometric Imaging Based on Deep Learning

  • Qianchen Xu;Weijie Chang;Feng Huang;Wang Zhang
    • Current Optics and Photonics
    • /
    • 제8권4호
    • /
    • pp.391-398
    • /
    • 2024
  • An image reconstruction algorithm is vital for the image quality of a photonic integrated interferometric imaging (PIII) system. However, image reconstruction algorithms have limitations that always lead to degraded image reconstruction. In this paper, a novel image reconstruction algorithm based on deep learning is proposed. Firstly, the principle of optical signal transmission through the PIII system is investigated. A dataset suitable for image reconstruction of the PIII system is constructed. Key aspects such as model and loss functions are compared and constructed to solve the problem of image blurring and noise influence. By comparing it with other algorithms, the proposed algorithm is verified to have good reconstruction results not only qualitatively but also quantitatively.

딥러닝 사물 인식 알고리즘(YOLOv3)을 이용한 미세조류 인식 연구 (Microalgae Detection Using a Deep Learning Object Detection Algorithm, YOLOv3)

  • 박정수;백지원;유광태;남승원;김종락
    • 한국물환경학회지
    • /
    • 제37권4호
    • /
    • pp.275-285
    • /
    • 2021
  • Algal bloom is an important issue in maintaining the safety of the drinking water supply system. Fast detection and classification of algae images are essential for the management of algal blooms. Conventional visual identification using a microscope is a labor-intensive and time-consuming method that often requires several hours to several days in order to obtain analysis results from field water samples. In recent decades, various deep learning algorithms have been developed and widely used in object detection studies. YOLO is a state-of-the-art deep learning algorithm. In this study the third version of the YOLO algorithm, namely, YOLOv3, was used to develop an algae image detection model. YOLOv3 is one of the most representative one-stage object detection algorithms with faster inference time, which is an important benefit of YOLO. A total of 1,114 algae images for 30 genera collected by microscope were used to develop the YOLOv3 algae image detection model. The algae images were divided into four groups with five, 10, 20, and 30 genera for training and testing the model. The mean average precision (mAP) was 81, 70, 52, and 41 for data sets with five, 10, 20, and 30 genera, respectively. The precision was higher than 0.8 for all four image groups. These results show the practical applicability of the deep learning algorithm, YOLOv3, for algae image detection.

심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적 (Digital Twin and Visual Object Tracking using Deep Reinforcement Learning)

  • 박진혁;;최필주;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘 (Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning)

  • 우성희;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.306-308
    • /
    • 2018
  • 제안 논문은 딥러닝 알고리즘을 이용해 모바일 환경에서 변종 악성코드 탐지 알고리즘을 제안한다. 안드로이드 기반의 행위 기반의 악성코드 탐지 방법의 문제점을 해결하기 위해 시그니처 기반 악성코드 탐지방법과 머신 러닝(Machine Learning)기법을 활용한 실시간 악성파일 탐지 알고리즘을 통해 높은 탐지율을 증명하였다.

  • PDF