• 제목/요약/키워드: deep-learning algorithm

검색결과 1,190건 처리시간 0.029초

Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘 (Path selection algorithm for multi-path system based on deep Q learning)

  • 정병창;박혜숙
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.50-55
    • /
    • 2021
  • 다중경로 시스템은 유선망, LTE망, 위성망 등 다양한 망을 동시에 활용하여 데이터를 전송하는 시스템으로, 통신망의 전송속도, 신뢰도, 보안성 등을 높이기 위해 제안되었다. 본 논문에서는 이 시스템에서 각 망의 지연시간을 보상으로 하는 강화학습 기반 경로 선택 방안을 제안하고자 한다. 기존의 강화학습 모델과는 다르게, deep Q 학습을 이용하여 망의 변화하는 환경에 즉각적으로 대응하도록 알고리즘을 설계하였다. 네트워크 환경에서는 보상 정보를 일정 지연시간이 지나야 얻을 수 있으므로 이를 보정하는 방안 또한 함께 제안하였다. 성능을 평가하기 위해, 분산 데이터베이스와 텐서플로우 모듈 등을 포함한 테스트베드 학습 서버를 개발하였다. 시뮬레이션 결과, 제안 알고리즘이 RTT 감소 측면에서 최저 지연시간을 선택하는 방안보다 20% 가량 좋은 성능을 가지는 것을 확인하였다.

점군 기반의 심층학습을 이용한 파지 알고리즘 (Grasping Algorithm using Point Cloud-based Deep Learning)

  • 배준협;조현준;송재복
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.130-136
    • /
    • 2021
  • In recent years, much study has been conducted in robotic grasping. The grasping algorithms based on deep learning have shown better grasping performance than the traditional ones. However, deep learning-based algorithms require a lot of data and time for training. In this study, a grasping algorithm using an artificial neural network-based graspability estimator is proposed. This graspability estimator can be trained with a small number of data by using a neural network based on the residual blocks and point clouds containing the shapes of objects, not RGB images containing various features. The trained graspability estimator can measures graspability of objects and choose the best one to grasp. It was experimentally shown that the proposed algorithm has a success rate of 90% and a cycle time of 12 sec for one grasp, which indicates that it is an efficient grasping algorithm.

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권2호
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

Dropout Genetic Algorithm Analysis for Deep Learning Generalization Error Minimization

  • Park, Jae-Gyun;Choi, Eun-Soo;Kang, Min-Soo;Jung, Yong-Gyu
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.74-81
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA(Dropout Genetic Algorithm) which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

딥러닝 알고리즘 기반 탄산화 진행 예측에서 활성화 함수 적용에 관한 기초적 연구 (A Fundamental Study on the Effect of Activation Function in Predicting Carbonation Progress Using Deep Learning Algorithm)

  • 정도현;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.60-61
    • /
    • 2019
  • Concrete carbonation is one of the factors that reduce the durability of concrete. In modern times, due to industrialization, the carbon dioxide concentration in the atmosphere is increasing, and the impact of carbonation is increasing. So, it is important to understand the carbonation resistance according to the concrete compounding to secure the concrete durability life. In this study, we want to predict the concrete carbonation velocity coefficient, which is an indicator of the carbonation resistance of concrete, through the deep learning algorithm, and to find the activation function suitable for the prediction of carbonation rate coefficient as a process to determine the learning accuracy through the deep learning algorithm. In the scope of this study, using the ReLU function showed better accuracy than using other activation functions.

  • PDF

A DEEP LEARNING ALGORITHM FOR OPTIMAL INVESTMENT STRATEGIES UNDER MERTON'S FRAMEWORK

  • Gim, Daeyung;Park, Hyungbin
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.311-335
    • /
    • 2022
  • This paper treats Merton's classical portfolio optimization problem for a market participant who invests in safe assets and risky assets to maximize the expected utility. When the state process is a d-dimensional Markov diffusion, this problem is transformed into a problem of solving a Hamilton-Jacobi-Bellman (HJB) equation. The main purpose of this paper is to solve this HJB equation by a deep learning algorithm: the deep Galerkin method, first suggested by J. Sirignano and K. Spiliopoulos. We then apply the algorithm to get the solution to the HJB equation and compare with the result from the finite difference method.

Deep Q-Network를 이용한 준능동 제어알고리즘 개발 (Development of Semi-Active Control Algorithm Using Deep Q-Network)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용 (Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm)

  • 강현구;서동성;이병석;강민수
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.