• 제목/요약/키워드: deep-learning algorithm

검색결과 1,190건 처리시간 0.029초

YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로 (A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California)

  • 박상철;박영빈;장소영;김태호
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1463-1478
    • /
    • 2022
  • 한국 수출입의 99.7%는 해상운송이 차지하고 있으며, 항만의 효율적 운영을 위해 해운 물류 모니터링 시스템 개발 필요성이 대두되고 있다. 현재 automatic identification system (AIS)를 기반으로 선박의 정보를 조회하여 해상 물동량 추정 연구가 진행되고 있지만, AIS를 운영하지 않는 선박들에 대한 모니터링은 불가능하다는 한계가 있다. 고해상도 광학 위성 영상은 광역의 범위에서 AIS 미운영 선박 및 소형 선박을 식별할 수 있기 때문에 AIS 기반 물동량 모니터링의 공백을 보완할 수 있다. 그러므로 선박 및 물동량 모니터링에 활용하기 위해, 고해상도 광학 위성영상에서 선박을 탐지하고 화물선 및 소형 선박을 분류하는 연구가 필요하다. 본 연구는 초기 국토위성영상을 이용하여 생산된 학습 자료 기반으로 인공지능 모델을 훈련시키고 다른 영상에서 탐지를 수행함으로써, 국토위성영상의 딥러닝 학습 자료 생산 및 선박 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 황해 및 황해 주요 항만 구역 내 선박들을 추출하여 제작했으며, You Only Look Once (YOLO) 알고리즘을 사용하여 탐지 모델은 구축하고 국내외 주요 항만 각 1개소를 대상으로 선박 탐지 성능을 평가하였다. 항만 접안 및 해상 정박중인 선박을 대상으로 탐지 모델에 적용한 결과를 AIS의 선종 정보와 비교하였고, 국내 항만에서 85.5%와 89%, 국외 항만에서 70%의 선종 분류 정확도를 확인하였다. 본 연구 결과는 정박중인 선박을 중심으로 고해상도 국토위성영상을 활용하여 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 구축을 통해 탐지 모델의 정확도를 향상시킨다면 전세계 주요 항만에서 선박 및 물동량 모니터링 분야에 활용할 수 있을 것으로 기대된다.

인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축 (Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems)

  • 김승섭;이동호;이민우;김소연;신재승;최진영;최병욱
    • 대한영상의학회지
    • /
    • 제82권5호
    • /
    • pp.1196-1206
    • /
    • 2021
  • 목적 간 종양의 조영증강 컴퓨터단층촬영(이하 CT) 영상에 관한 인공지능 알고리즘의 성능과 안전성을 검증할 수 있는 표준 테스팅 데이터셋을 구축하고자 하였다. 대상과 방법 국내 4개 3차 의료기관의 복부 영상의학 전문가 4인이 모여 간 종양 진단 알고리즘의 성능과 안전성을 검증하기 위해 표준 데이터셋이 갖춰야 할 조건을 논의하였다. 각 기관마다 간세포암 75예, 전이암 75예, 그리고 양성 병변 30-50예씩 수집하여, 총 783명 환자의 CT 영상을 대상으로 하였다. 간세포암과 전이암의 경우 병리학적으로 확진된 경우만을 대상으로 하였다. 각 기관의 복부 영상의학 전문가들이 직접 환자의 임상정보를 추출하고 CT 영상에 관한 데이터 라벨링(labeling)을 수기로 시행하였다. CT 영상은 의료용 디지털 영상 및 통신(Digital Imaging and Communications in Medicine, DICOM) 파일로 저장하였다. 결과 복부 영상의학 전문가들이 수기 데이터 라벨링을 시행한 총 783 증례의 간 종양 조영증강 CT의 표준 데이터셋을 구축하였다. 알고리즘의 성능 및 안전성은 병변의 발견 여부 및 특성화의 정확도에 대해 민감도와 특이도를 계산하여 평가할 수 있다. 결론 본 연구에서 구축한 간 종양 조영증강 CT 영상의 표준 데이터셋은 임상의학 결정 지원시스템을 위한 기계학습 기반 인공지능 알고리즘을 평가하는 데에 활용될 수 있다.

합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 아토피피부염 중증도 진단 모델 개발 (Development of Intelligent Severity of Atopic Dermatitis Diagnosis Model using Convolutional Neural Network)

  • 윤재웅;전재헌;방철환;박영민;김영주;오성민;정준호;이석준;이지현
    • 경영과정보연구
    • /
    • 제36권4호
    • /
    • pp.33-51
    • /
    • 2017
  • 제4차 산업혁명의 등장과 경제성장으로 인한 '국민 삶의 질 향상' 요구 증대로 인해 의료서비스의 질과 의료비용에 대한 국민들의 요구수준이 향상되고 있으며, 이로 인해 인공지능이 의료현장에 도입되고 있다. 하지만 인공지능이 의료분야에 활용된 사례를 살펴보면 '삶의 질'에 직접적인 영향을 끼치는 만성피부질환에 활용된 사례는 부족한 실정이며, 만성피부질환 중 대표적 질병인 아토피피부염은 정성적 진단 방법으로 인해 진단의 객관성을 확보할 수 없다는 한계가 존재한다. 본 연구에서는 아토피피부염의 객관적 중증도 평가 방법을 마련하여 아토피피부염 환자의 삶의 질을 향상시키고자 다음과 같은 연구를 수행하였다. 첫째, 가톨릭대학교 의과대학 성모병원의 데이터베이스로부터 아토피피부염 환자의 이미지 데이터를 수집했으며, 수집된 이미지 데이터에 대한 정제 및 라벨링 작업을 수행하여 모델 학습과 검증에 적합한 데이터를 확보했다. 둘째, 지능형 아토피피부염 중증도 진단 모형에 적합한 이미지 인식 알고리즘을 파악하기 위해 다양한 CNN 알고리즘들을 병변별 학습용 데이터로 학습시키고, 검증용 데이터를 활용하여 해당 모델의 이미지 인식 정확도를 측정했다. 실증분석 결과 홍반(Erythema)의 경우 'ResNet V1 101', 긁은 정도(Excoriation)의 경우 'ResNet V2 50'이 90% 이상의 정확도를 기록하였으며, 태선화(Lichenification)의 경우 학습용 데이터 부족의 한계로 인해 두 병변보다 낮은 89%의 정확도를 보였다. 해당 결과를 통해 이미지 인식 알고리즘이 단순한 사물 인식 분야뿐만 아니라 전문적 지식이 요구되는 분야에도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 아토피피부염 환자의 이미지 데이터를 활용했다는 측면에서 실제 임상환경에서 활용성이 높을 것으로 사료된다.

  • PDF

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 영상의 복원: 예비 연구 (Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study)

  • 하수민;김학희;강은희;서보경;최나미;김태희;구유진;예종철
    • 대한영상의학회지
    • /
    • 제83권2호
    • /
    • pp.344-359
    • /
    • 2022
  • 목적 깊은 컨볼루션 신경망 기법을 결합한 영상 잡음 제거 알고리즘을 개발하고 이를 응용하여 저선량 유방 촬영 영상으로 유방암을 진단하는 데 그 효능을 조사하고자 한다. 대상과 방법 6명의 유방 영상 전문의가 전향적 연구에 참여하였다. 모든 영상 전문의는 병변 감지를 위해 저선량 영상을 독립적으로 평가하고 정성적 척도를 사용하여 진단 품질을 평가하였다. 영상 잡음 제거 알고리즘을 적용한 후, 동일한 영상 전문의가 병변 감지 가능성과 영상 품질에 대한 평가를 하였다. 임상 적용을 위해 동일한 영상 전문의가 병변 유형과 위치에 대한 합의 결정 후, 저선량 영상, 재구성된 영상, 기존 선량 영상을 무작위 순서로 제시하여 평가하였다. 결과 전 절제 표본의 저선량 영상을 참조로 40% 재구성된 영상에서 병변이 더 잘 인식되었다. 임상 적용단계에서 40% 재구성된 영상과 비교하여, 기존 선량 영상이 해상도(p < 0.001), 석회에 대한 진단 품질(p < 0.001), 유방 종괴, 비대칭, 구조왜곡의 진단 품질(p = 0.037)에 대해 더 높은 평균값을 보였다. 40% 재구성된 영상은 100% 영상과 비교 시 전반적 화질(p = 0.547), 병변의 가시성(p = 0.120), 대조도(p = 0.083)에서 비슷한 성적을 보였으며 유의미한 차이도 보이지 않았다. 결론 깊은 컨볼루션 신경망 기법을 결합한 효과적인 잡음 제거 및 영상 재구성 처리 알고리즘은 유방 촬영의 상당한 선량 감소를 위한 길을 열어 유방암 진단을 가능하게 할 것이다.

인공신경망을 이용한 터널구간의 암반분류 예측 (A prediction of the rock mass rating of tunnelling area using artificial neural networks)

  • 한명식;양인재;김광명
    • 한국터널지하공간학회 논문집
    • /
    • 제4권4호
    • /
    • pp.277-286
    • /
    • 2002
  • 터널을 설계함에 있어서 굴착방법이나 지보패턴을 결정할 때 어려움을 겪는 주된 요인은 현지 지반에 작용하는 응력조건 및 암반상태를 정확히 파악하는데 한계가 있기 때문이다. 현장 장비의 제약, 터널을 굴착 위치까지 접근성이 난이함 등의 기술적인 제약뿐만 아니라 최근에는 민원이나 각종 인허가 등으로 더욱 많은 제약요건이 존재한다. 그럼에도 불구하고 최근들어 대안설계나 턴키설계를 통하여 직접적인 시추에 의존하지 않더라도 미지의 산악터널구간에 대한 지반정보를 획득할 수 있는 고급화된 물리탐사기술이 눈부시게 발전하는 추세이며 이를 통하여 터널굴착구간의 암반에 대한 직 간접적인 지반정보를 입수할 수 있다. 인공신경망 (ANN)의 장점은 이러한 적은 양의 지반정보와 생물학적인 로직화 과정을 통하여 입력변수에 대한 보다 신뢰성있는 결과를 제공하여 준다는 것이다. 본 연구에서는 미지의 터널굴착구간에 대한 예비 지반정보를 입력항목으로 하여 인공신경망의 오류역전파 학습알고리즘기법에 의하여 학습된 패턴을 가지고 미지의 터널굴착구간에 대한 예비 암반분류 (RMR)를 수행하는데 그 목적을 두었다. 이를 위하여 연장 4km에 달하는 ${\triangle}{\triangle}$터널현장에 대한 인공신경망 모형적용시 입력자료에 대한 적정성을 사전 평가하였고, 그 이후에 물리탐사자료를 입력변수로 활용하여 미지의 터널구간에 대한 RMR을 예측하였다. 그 결과 자료의 일치성이나 예측 RMR에 대한 신뢰도가 높은 것으로 나타났으며, 향후에는 학습효과를 높이기 위한 입력변수의 민감도 분석 (sensitivity analysis)수행 및 모델과정에서 노출된 몇가지 문제점 보완등을 통하여 설계에 적극적으로 활용하고자 한다.

  • PDF

질의 응답 시스템에서 심층적 질의 카테고리의 개념 커버리지에 기반한 의미적 질의 확장 (Semantic Query Expansion based on Concept Coverage of a Deep Question Category in QA systems)

  • 김혜정;강보영;이상조
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권3호
    • /
    • pp.297-303
    • /
    • 2005
  • 질의응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer type) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 흑은 다른 문법적 정보를 가진 카테고리에 등장하여 정답 추출에 어려움이 따른다. 만약, 질의에서 요구하는 정보유형을 보다 깊게 세분화하고, 세분화된 질의 유형과 개념적으로 유사한 문장을 대상으로 정답 추출을 수행할 수 있다면 보다 정확한 정답을 추출할 수 있을 것이다. 따라서, 본 논문은 심층 질의 카테고리의 개념 커버리지에 기반한 효과적인 의미적 질의 확장 방법론을 제안한다. 질의에서 요구하는 정보 유형을 보다 세분화된 심충 질의 카테고리로 나누고, 이러한 심층 질의 카테고리를 표현하기 위해 동원되는 어휘 집합에 질의 확장을 적용함으로써 정답 추출의 성능을 향상시키고자 하였다. 제안된 시스템의 성능 평가를 위하여, TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건과 TREC-9의 질의를 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

Stock prediction using combination of BERT sentiment Analysis and Macro economy index

  • Jang, Euna;Choi, HoeRyeon;Lee, HongChul
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.47-56
    • /
    • 2020
  • 주가지수는 한 국가의 경제 지표뿐만 아니라 투자판단의 지표로도 활용되므로 이를 예측하는 연구가 지속해서 진행되고 있다. 주가지수 예측을 하는 작업은 기술적, 경제적 및 심리적 요인 등이 반영된 것으로 예측의 정확도를 위해서는 복합적 요인을 고려해야 한다. 따라서 지수의 변동에 영향을 미치는 요인들을 선별하여 반영한 주가지수 예측모델연구가 필요하다. 이와 관련한 기존 연구에서는 시장의 변동을 만들어 내는 뉴스 정보 또는 거시 경제 지표를 각각 이용하거나, 몇 가지의 지표 조합만을 반영한 예측 연구가 대부분이었다. 따라서 본 연구에서는 미국 다우존스지수 예측을 위해 뉴스 정보의 감성 분석과 다양한 거시경제지표를 고려하여 효과적인 지표 조합을 제시하고자 한다. 뉴스 정보의 감성 분석은 최신 자연어처리 기법인 BERT와 NLTK VADER를 사용하고, 예측모델은 주가예측모델로 적합하다고 알려진 딥러닝 예측모델 LSTM을 적용하여 가장 효과적인 지표 조합을 제시했다.

소나무재선충병 피해목 탐지를 위한 UAV기반의 식생지수 비교 연구 (A Study on the UAV-based Vegetable Index Comparison for Detection of Pine Wilt Disease Trees)

  • 정윤영;김상욱
    • 지적과 국토정보
    • /
    • 제50권1호
    • /
    • pp.201-214
    • /
    • 2020
  • 본 연구는 UAV 영상의 식생지수를 활용한 소나무재선충병 피해목 조기 탐지를 그 목적으로 하며, NDVI를 비롯한 대표적인 식생지수들을 선정하고 각각의 분류 정확도 비교분석을 통해 최적의 식생지수를 분석해보았다. 현장답사를 통하여 193개체의 소나무재선충병 피해목 위치데이터를 구축하고 동시에 다중분광 UAV 영상을 이용하여 4가지 식생지수 분석을 수행하였다. 무감독분류(K-Means)를 통하여 피해목을 분류하였고, 오차행렬(Confusion Matrix)를 이용하여 식생지수별 분류정확도를 비교·분석하였다. 연구의 결과를 요약하면 다음과 같다. 첫째 분류의 전체정확도는 NDVI (88.04%, Kappa계수 0.76) > GNDVI (86.01%, Kappa계수 0.72) > NDRE (77.35%, Kappa계수 0.55) > SAVI (76.84%, Kappa계수 0.54)순으로 분석되어 NDVI가 가장 높은 정확도를 보였으며, GNDVI가 거의 비슷한 수준의 분류정확도를 보였다. 둘째, NDVI 및 GNDVI 식생지수를 이용한 K-Means 무감독 분류방법으로 피해목의 판별이 어느 정도 가능한 것으로 판단된다. 특히 위 기법은 연산이 집약적이고 사용자의 개입이 적고 분석과정이 상대적으로 간단하여 피해목의 조기 탐지에 도움을 줄 수 있을 것으로 판단된다. 향후 시계열영상의 활용 또는 딥러닝기법의 추가 응용으로 분류정확도를 높일 수 있을 것으로 기대한다.

RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석 (Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images)

  • 이예지;김신;임한신;이희경;추현곤;서정일;윤경로
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.155-166
    • /
    • 2021
  • 현재 대부분의 객체 탐지 알고리즘은 RGB 영상을 기반으로 연구되고 있다. 하지만 RGB 카메라는 물체에서 반사되는 빛을 받아들여 영상을 생성하기 때문에, 물체에서 나오는 빛이 적거나 산란이 되는 야간 또는 안개가 끼는 환경에서는 물체의 정보가 잘 표현되는 영상 취득이 어려워 객체 탐지의 정확도가 떨어진다. 그에 반해 IR(열 적외선, Infra-Red) 영상은 열 센서로 이미지를 생성하기 때문에 RGB 영상에 비해 정확한 물체의 정보를 표현할 수 있다. 따라서 본 논문에서는 이러한 이미지 특성 차이에 따른 객체 탐지 성능을 비교하고자 하며, RGB와 IR 영상의 압축률에 따른 객체 탐지를 수행하고, 결과를 비교 분석 하고자 한다. 실험에 사용된 영상은 첨단운전자 보조 시스템(ADAS) 연구용 데이터 세트인 Free FLIR Thermal 데이터 세트 중 야간에 촬영된 RGB 영상과 IR 영상을 사용하였으며, 기존 RGB 영상 기반으로 사전 학습된 신경망과 FLIR Thermal 데이터 세트 내 RGB 영상과 IR 영상을 일부 골라 재학습한 신경망을 이용하여 객체 탐지를 수행하였다. 실험 결과 RGB 기반으로 사전 학습된 신경망과 재학습한 신경망 모두 IR 영상 기반 객체 탐지 성능이 RGB 영상 기반 성능보다 월등한 것을 확인할 수 있었다.