• Title/Summary/Keyword: deep-drawability

Search Result 63, Processing Time 0.024 seconds

The Drawbility Estimation in warm and Hot Forming of AB31B Magnesium Sheet (AZ31B 마그네슘판재의 온간, 열간 딮드로잉 성형성 평가)

  • Choo, D. K.;Oh, S. W.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.628-634
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350, $400^{\circ}C$), forming speeds (20, 50, 100mm/min), thicknesses (0.8, 1.4mm) and blank holding forces (2.0, 2.8, 3.4kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiments show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 2.0kN blank holding force. The 0.8mm magnesium sheets were deformed better than 1.4 mm. Blank holding force was controlled in order to improve drawability and prevent the change of cup thickness. When blank holding force was controlled, tearing and thickness change were decreased and limit drawing ratio was improved from 2.1 to 3.0.

Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment) (알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

A Study on the Experimental Evaluation of the Forming Limit and Deep-Drawability of Sheet Metals (금속판재의 성형한계 및 디프드로잉 성형성의 실험적 평가에 관한 연구)

  • Rim, Jae-Kyu;Lee, Sang-Ho;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.67-74
    • /
    • 1999
  • The mechanical properties including forming limit and deep-drawability of commercially-used sheet metals were experimentally estimated in this study. Uniaxial tensile test to obtain basic mechanical properties was carried out, followed by limiting dome height (LDH) test and forming limit diagram (FLD) test to quantitatively evaluate the sheet-formability. Deep drawing and reverse drawing tests were also performed to find out the critical values of the blank holding force and the gap between the die and the blank holder which enabled the deep drawing and reverse drawing of a successful cop without any wrinkle or fracture. The thickness of the cup wall along the rolling-, transeverse- and $45^{\circ}$-directions was measured and compared with one another. And the punch force-stroke curve and the critical punch force expected from the theory coincided with the experimental result very well for mild steel while not for aluminium alloy.

  • PDF

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

Formability of Sheet Metals (금속판재의 성형성)

  • 이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.11-23
    • /
    • 1994
  • Formability of sheet metals can be evaluated using tensile testing. Easily measured tensile properties such as yield strength, tensile strength, elongation, strain hardening exponent, strain rate sensitivity and plastic strain ratio are important parameters to evaluated the sheet formability. This paper briefly explains how these properties are related to deep drawability and stretchability. The plastic anisotropy of sheet metals is usually attributed to the crystallographic texture. However dislocation distribution may influence the anisotropy.

Comparision of Warm Deep Drawability of Square Cups Using Circular Clad Sheet Metals (원형 클래드 판재를 이용한 정사각컵 온간 디프 드로잉성 비교)

  • Ryu H. Y.;Kim Y. E.;Kim J. H.;Chung W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.89-93
    • /
    • 2001
  • This study was carried out to investigate the warm deep drawability of square cups of clad sheet metals, by changing temperatures of die and blankholder and blank materials. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were chosen for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was $29\%$ higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.65 at $120^{\circ}C$ which was $16\%$ better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. Therefore, warm forming technique was confirmed to ive better results in deep drawing of stainless clad sheet metal.

  • PDF

The Effect of Mo and Cr addition on the Deep Drawability of Dual Phase Steel Sheets (이상조직강판의 성형특성에 미치는 Mo와 Cr첨가의 영향)

  • Han, Seong Ho;Ahn, Yeon Sang;Chin, Kwang Geun;Kim, In Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.713-724
    • /
    • 2008
  • The need to lower the weights of automotive vehicle and to improve the safety of cars has resulted in the development of high strength steels such as TRIP(Transformation Induced Plasticity) and DP (Dual Phase) steel. It is well known that the higher strength of steel shows the poorer press formability. Among the high strength steels, DP steel shows several good characteristics such as low yield ratio, high initial n value, high elongation, high bake hardenability and anti-aging property. However, there's a certain limit in application of DP steels to the automotive panel parts because their poor deep drawbility caused by martensite. In this study, the effect of alloying elements on the deep drawability and recrystallization texture in TS 440MPa grade DP steel with 0.015~0.02% carbon has been investigated on the base of SEM, TEM, XRD and EBSD analysis.

Analysis of Formability of Magnesium Alloy using Finite Element Method (유한요소법에 의한 마그네슘 합금판의 성형성 해석)

  • Kang, Dae-Min;Park, Kyeong-Dong;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.60-66
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. In this paper, It was focussed on the drawability factors on the square cup deep drawing by PAM-STAMP with using magnesium alloy to reduce car weight as well as to draw much attention from the viewpoint of environmental preservation high rigidity, In order to predict the effect of drawability factors, the relationships between punch load and punch stroke, the relationships between thickness strain and distance, and are used. According to this study, the results of simulation will give engineers good information to access the drawability of square cup deep drawing at warm temperature.

  • PDF

A Study on the Formability Factors of Sheet Metal in Deep Drawing of Square Cup by FEM (유한요소법에 의한 정사각컵 디프드로잉 성형에 미치는 성형인자에 관한 연구)

  • 이명섭;황종관;강대민
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.86-91
    • /
    • 2000
  • Numerical simulation of sheet metal forming for panels as other components has wide acceptance in the automotive industry. Therefore this paper was focused in the drawability factors (which are friction coefficient , radius of die and punch ) on the square cup deep drawing by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis. In order to compare the simulation results with the experiment results and predict the effect of drawability factors, the relationships between punch load punch stroke, and the relationships between thickness strain and distance are used. According to this study, the results of simulation by using $PAM-STAMP^{TM}$ will give engineers good information to access the drawability of square drawing.

  • PDF

Texture and Plastic Strain Ratio Changes during a 2 Step Asymmetric Rolling and Annealing of AA5083 Al Alloy Sheet (2단계 비대칭 압연과 열처리한 AA5083 Al 합금판재의 집합조직과 소성변형비 변화)

  • Jeong, H.B.;Lee, J.H.;Kim, G.H.;Nam, S.K.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.82-87
    • /
    • 2014
  • The plastic strain ratio is one of the factors that affect the deep drawability of Al alloy sheet. The deep drawability of Al alloy sheet is limited because of its low plastic strain ratio. Therefore an increase in the plastic strain ratio to improve the deep drawability of Al alloy sheet is needed. The current study investigated the increase of the plastic strain ratio and the change in texture of AA5083 Al alloy sheet after a 2 step asymmetric rolling with heat treatments. The average plastic strain ratio of initial AA5083 Al alloy sheets was 0.83. After the first asymmetric rolling step of 88% deformation and subsequent heat treatment at $320^{\circ}C$ for 10 minutes the value was still 0.83. After the second asymmetric rolling of 14% reduction and subsequent heat treatment at $330^{\circ}C$ for 10 minutes the plastic strain ratio rose to 1.01. The average plastic strain ratio after the 2 step asymmetric rolling and heat treatment is 1.2 times higher than that of initial AA5083 Al alloy sheet. This result is related to the development of ND/<111> texture component after the second asymmetric rolling and heat treatment.