• 제목/요약/키워드: deep water marine riser

검색결과 6건 처리시간 0.217초

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

Sensitivity Study on SCR Design for Spread-Moored FPSO in West Africa

  • Yoo, Kwang-Kyu;Joo, Youngseok
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.111-120
    • /
    • 2017
  • It is generally acknowledged that the Steel Catenary Riser (SCR) is the most cost-effective riser type for deep-water offshore fields among various risers, including the SCR, flexible riser, and hybrid riser. However, in West Africa, the SCR type may not be suitable for FPSO systems because the large vertical motion of the floater brings about a considerable riser dynamic response. In this paper, an SCR system is designed for the FPSO in the West African field, where the use of a hybrid riser has been preferred. The proposed SCR configuration fulfills the design criteria of the API, such as the strength check and fatigue life. Moreover, a sensitivity analysis is also carried out to improve the certainty in the SCR design of a deep-water FPSO. The parameters affecting the strength and fatigue performance of the SCR are considered.

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

해역 기초생산력 증대를 위한 부유식 인공용승시스템 요소기술 (Key Technologies for Floating Type Artificial Upwelling System to Strengthen Primary Production)

  • 정동호;이호생;김현주;문덕수;이승원
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.78-83
    • /
    • 2012
  • The abundant nutrients contained in deep seawater are delivered by natural upwellings from the deep sea to the surface sea. However, the natural upwelling phenomenon is limited to specific areas of the sea; in other areas, the thermocline separates the surface sea from the lower layer. Thus, the surface layer is often deficient in nutritive salts, causing the deterioration of its primary productivity and ultimately leading to an imbalance in the marine ecosystem. Without a consistent supply of nitrogenous nutritive salts, they are absorbed by phytoplankton, resulting in a considerable problem in primary productivity. To solve this issue, a floating type of artificial upwelling system is suggested to artificially pump up, distribute, and diffuse deep seawater containing rich nutritive salts. The key technologies for developing such a floating artificial upwelling system are a floating offshore structure with a large diameter riser, self-supplying energy system, density current generating system, method for estimating the emission and absorption of CO2, and way to evaluate the primary production variation. Strengthening the primary production of the sea by supplying deep seawater to the sea surface will result in a sea environment with abundant fishery resources.

해상 부유식 1MW 해수온도차발전 시스템의 라이저 설계 (Design of Riser in 1MW OTEC system mounted on Floating Barge)

  • 권용주;정동호;김현주
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권1호
    • /
    • pp.22-28
    • /
    • 2015
  • 1 MW 해수온도차발전 시스템의 라이저에 관한 설계를 수행한다. 라이저의 직경은 1 MW 발전을 위한 심층수 취수량에 기초하여 결정되고, 관종은 제작 가능한 상업용 파이프를 대상으로 종류별 특성을 분석한 후 선정한다. 강관, GFRP관, 그리고 HDPE관 중 HDPE관을 선정하며, 선정된 관종의 중량과 강도를 보강하기 위하여 설계를 수행한다. HDPE 라이저 하부 끝단에 중량체를 설치하여 중량을 보강하며, HDPE 라이저 축방향으로 와이어로프를 설치하여 강도를 보강한다. 중량체의 중량은 GFRP관 무게 대비 25%와 50%가 되도록 설계되며, 라이저 끝단에 연결되는 중량체의 모든 하중은 와이어로프가 지지하도록 설계된다. 설계된 HDPE라이저는 연중 온도차발전이 가능한 하와이 인근 해역에 설치되는 것으로 가정하여, 수치해석적 방법에 의한 안전성 평가를 수행한다. 안전성이 검증된 HDPE 라이저에 대하여 경제적으로 가장 유리한 HDPE 라이저의 최종 제원을 결정한다. 설계된 라이저는 향후 1MW 해수온도차발전 시스템 실증을 위한 설계 자료로 활용될 수 있을 것으로 기대된다.