• Title/Summary/Keyword: deep sealed source

Search Result 2, Processing Time 0.016 seconds

Automatic recognition of the old and the infirm using Arduino technology implementation (아두이노를 사용하여 노약자 자동 인식 기술 구현)

  • Choi, Chul-kil;Lee, Sung-jin;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.454-457
    • /
    • 2014
  • Arduino is for design based on open source prototyping platform, artist, designer, hobby activists, etc, i has been designed for all those who are interested in the environment construct. Arduino adventage you can easily create applications hardware, without deep knowledge about the hardware. Configuration of arduino using AVR microcontroller ATmage 168, software to action arduino using arduino program, MATLAB, Processing. Arduino is open source base, you can hardware production directly and using shield additionally, the arduino can be combined. Android is open source. Continue to expand through a combination of hardware, Arduino. It name is shield. Be given to the Arduino Uno board to the main board, the shield extends to the various aspects and help can be equipped with more features. The shield on top of the shield can be combined as a kind of shield and Ethernet shield, motor shield, the shield RFID hardware beyond a simple extension can be configured. In this paper, RFID technology Sealed for automatic recognition of the elderly by the elderly to identify and tag them SM130 13.56Mhz compatible hardware was constructed by combining tags.

  • PDF

Occurrence, Geochemistry and Origin of $Co_2$-rich Water from the Chungcheong Area, Korea (충청지역 탄산수의 산출양상, 지화학적 특성 및 생성기원)

  • 정찬호;김종근;이재영
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.227-241
    • /
    • 2001
  • Several $Co_2$-rich springs in the Chungcheong area, Le., the Angsung spring, the Chojung spring, the Myungam spring, the Bukang spring and the Daepyung spring have been long known for their particular water chemistry. The occurrences of these springs are closely related to the geologic structure of Mesozoic granite such as dyke swarms, fault zones and the geologic boundary between granite and its adjacent gneiss. The $Co_2$-rich water samples show a high $Co_2$ concentration ($P_{CO2}$ 0.25 atm to 0.99 atm), weak acidic pHs and the electrical conductivity ranging from 101 to 2,950 ${\mu}$S/cm. The $Co_2$-rich water samples are classified into the Ca-$HC0_3$ type and the Ca(Na)-$HCO_3$) type in chemical composition. Environmental isotopic data $^{2}H/^{1}H, ^{18}O/^{16}O$) indicated that $Co_2$-rich water was meteoric origin. The ${\delta}^{13}C$ values of $Co_2$-rich water range from -3.1$\textperthousand$ to -6.8$\textperthousand$ PDB. The values indicate that $H_2CO_3^0$ and $HC0_3^-$ of the water samples are mainly originated from a deep-seated source and partly contributed from carbonatc minerals. The major minerals determining the chemistry of $Co_2$-rich watcr arc probably the carbonate minerals which are present as veins and secondary minerals, and the plagiocalse in granite and gneiss.

  • PDF