• 제목/요약/키워드: deep neural net

Search Result 327, Processing Time 0.023 seconds

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Functionality-based Processing-In-Memory Accelerator for Deep Neural Networks (딥뉴럴네트워크를 위한 기능성 기반의 핌 가속기)

  • Kim, Min-Jae;Kim, Shin-Dug
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.8-11
    • /
    • 2020
  • 4 차 산업혁명 시대의 도래와 함께 AI, ICT 기술의 융합이 진행됨에 따라, 유저 레벨의 디바이스에서도 AI 서비스의 요청이 실현되었다. 이미지 처리와 관련된 AI 서비스는 피사체 판별, 불량품 검사, 자율주행 등에 이용되고 있으며, 특히 Deep Convolutional Neural Network (DCNN)은 이미지의 특색을 파악하는 데 뛰어난 성능을 보여준다. 하지만, 이미지의 크기가 커지고, 신경망이 깊어짐에 따라 연산 처리에 있어 낮은 데이터 지역성과 빈번한 메모리 참조를 야기했다. 이에 따라, 기존의 계층적 시스템 구조는 DCNN 을 scalable 하고 빠르게 처리하는 데 한계를 보인다. 본 연구에서는 DCNN 의 scalable 하고 빠른 처리를 위해 3 차원 메모리 구조의 Processing-In-Memory (PIM) 가속기를 제안한다. 이를 위해 기존 3 차원 메모리인 Hybrid Memory Cube (HMC)에 하드웨어 및 소프트웨어 모듈을 추가로 구성하였다. 구체적으로, Processing Element (PE)간 데이터를 공유할 수 있는 공유 캐시 및 소프트웨어 스택, 파이프라인화된 곱셈기 및 듀얼 프리페치 버퍼를 구성하였다. 이를 유명 DCNN 알고리즘 LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, RestNet 에 대해 성능 평가를 진행한 결과 기존 HMC 대비 40.3%의 속도 향상을 29.4%의 대역폭 향상을 보였다.

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2022
  • Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network (합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구)

  • Kim, Ji-Hye;Lee, Hyoungseok;Hur, Jea-Wook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.129-136
    • /
    • 2021
  • Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.

DeepCleanNet: Training Deep Convolutional Neural Network with Extremely Noisy Labels

  • Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1349-1360
    • /
    • 2020
  • In recent years, Convolutional Neural Networks (CNNs) have been successfully implemented in different tasks of computer vision. Since CNN models are the representatives of supervised learning algorithms, they demand large amount of data in order to train the classifiers. Thus, obtaining data with correct labels is imperative to attain the state-of-the-art performance of the CNN models. However, labelling datasets is quite tedious and expensive process, therefore real-life datasets often exhibit incorrect labels. Although the issue of poorly labelled datasets has been studied before, we have noticed that the methods are very complex and hard to reproduce. Therefore, in this research work, we propose Deep CleanNet - a considerably simple system that achieves competitive results when compared to the existing methods. We use K-means clustering algorithm for selecting data with correct labels and train the new dataset using a deep CNN model. The technique achieves competitive results in both training and validation stages. We conducted experiments using MNIST database of handwritten digits with 50% corrupted labels and achieved up to 10 and 20% increase in training and validation sets accuracy scores, respectively.

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network (심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning (컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식)

  • Kang, Euncheol;Han, Yeongtae;Oh, Il-Seok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2018
  • A poisoning accident is often caused by a situation in which people eat poisonous mushrooms because they cannot distinguish between edible mushrooms and poisonous mushrooms. In this paper, we propose an automatic mushroom recognition system by using the convolutional neural network. We collected 1478 mushroom images of 38 species using image crawling, and used the dataset for learning the convolutional neural network. A comparison experiment using AlexNet, VGGNet, and GoogLeNet was performed using the collected datasets, and a comparison experiment using a class number expansion and a fine-tuning technique for transfer learning were performed. As a result of our experiment, we achieve 82.63% top-1 accuracy and 96.84% top-5 accuracy on test set of our dataset.

A Study on the Deep Learning-Based Tomato Disease Diagnosis Service (딥러닝기반 토마토 병해 진단 서비스 연구)

  • Jo, YuJin;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.48-55
    • /
    • 2022
  • Tomato crops are easy to expose to disease and spread in a short period of time, so late measures against disease are directly related to production and sales, which can cause damage. Therefore, there is a need for a service that enables early prevention by simply and accurately diagnosing tomato diseases in the field. In this paper, we construct a system that applies a deep learning-based model in which ImageNet transition is learned in advance to classify and serve nine classes of tomatoes for disease and normal cases. We use the input of MobileNet, ResNet, with a deep learning-based CNN structure that builds a lighter neural network using a composite product for the image set of leaves classifying tomato disease and normal from the Plant Village dataset. Through the learning of two proposed models, it is possible to provide fast and convenient services using MobileNet with high accuracy and learning speed.

Automated detection of corrosion in used nuclear fuel dry storage canisters using residual neural networks

  • Papamarkou, Theodore;Guy, Hayley;Kroencke, Bryce;Miller, Jordan;Robinette, Preston;Schultz, Daniel;Hinkle, Jacob;Pullum, Laura;Schuman, Catherine;Renshaw, Jeremy;Chatzidakis, Stylianos
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.657-665
    • /
    • 2021
  • Nondestructive evaluation methods play an important role in ensuring component integrity and safety in many industries. Operator fatigue can play a critical role in the reliability of such methods. This is important for inspecting high value assets or assets with a high consequence of failure, such as aerospace and nuclear components. Recent advances in convolution neural networks can support and automate these inspection efforts. This paper proposes using residual neural networks (ResNets) for real-time detection of corrosion, including iron oxide discoloration, pitting and stress corrosion cracking, in dry storage stainless steel canisters housing used nuclear fuel. The proposed approach crops nuclear canister images into smaller tiles, trains a ResNet on these tiles, and classifies images as corroded or intact using the per-image count of tiles predicted as corroded by the ResNet. The results demonstrate that such a deep learning approach allows to detect the locus of corrosion via smaller tiles, and at the same time to infer with high accuracy whether an image comes from a corroded canister. Thereby, the proposed approach holds promise to automate and speed up nuclear fuel canister inspections, to minimize inspection costs, and to partially replace human-conducted onsite inspections, thus reducing radiation doses to personnel.