• 제목/요약/키워드: deep network

검색결과 2,986건 처리시간 0.034초

k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류 (Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.229-238
    • /
    • 2019
  • 목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.

A computer vision-based approach for behavior recognition of gestating sows fed different fiber levels during high ambient temperature

  • Kasani, Payam Hosseinzadeh;Oh, Seung Min;Choi, Yo Han;Ha, Sang Hun;Jun, Hyungmin;Park, Kyu hyun;Ko, Han Seo;Kim, Jo Eun;Choi, Jung Woo;Cho, Eun Seok;Kim, Jin Soo
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.367-379
    • /
    • 2021
  • The objectives of this study were to evaluate convolutional neural network models and computer vision techniques for the classification of swine posture with high accuracy and to use the derived result in the investigation of the effect of dietary fiber level on the behavioral characteristics of the pregnant sow under low and high ambient temperatures during the last stage of gestation. A total of 27 crossbred sows (Yorkshire × Landrace; average body weight, 192.2 ± 4.8 kg) were assigned to three treatments in a randomized complete block design during the last stage of gestation (days 90 to 114). The sows in group 1 were fed a 3% fiber diet under neutral ambient temperature; the sows in group 2 were fed a diet with 3% fiber under high ambient temperature (HT); the sows in group 3 were fed a 6% fiber diet under HT. Eight popular deep learning-based feature extraction frameworks (DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, MobileNet, VGG16, VGG19, and Xception) used for automatic swine posture classification were selected and compared using the swine posture image dataset that was constructed under real swine farm conditions. The neural network models showed excellent performance on previously unseen data (ability to generalize). The DenseNet121 feature extractor achieved the best performance with 99.83% accuracy, and both DenseNet201 and MobileNet showed an accuracy of 99.77% for the classification of the image dataset. The behavior of sows classified by the DenseNet121 feature extractor showed that the HT in our study reduced (p < 0.05) the standing behavior of sows and also has a tendency to increase (p = 0.082) lying behavior. High dietary fiber treatment tended to increase (p = 0.064) lying and decrease (p < 0.05) the standing behavior of sows, but there was no change in sitting under HT conditions.

인공신경망을 이용한 X-Band 레이다 유의파고 추정 (Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network)

  • 박재성;안경모;오찬영;장연식
    • 한국해안·해양공학회논문집
    • /
    • 제32권6호
    • /
    • pp.561-568
    • /
    • 2020
  • 항해용 X-band 레이다를 이용한 파랑관측은 기존의 파랑관측 방법인 부이식 파고계, 압력식 파고계, 초음파식 파고계에 비해 많은 이점이 있다. 예를 들면 유실과 파손의 위험이 없고, 유지관리 비용이 적게 들며, 심해부터 천해까지 파랑의 공간적 분포를 알 수 있다. 본 논문에서는 레이다형 파고계의 유의파고 측정 정확도를 높이는 인공신경망을 이용한 알고리즘을 제시하였다. 레이다형 파고계에서 유의파고를 추정하는 전통적인 방법은 신호 대 잡음 비율(${\sqrt{SNR}}$) 또는 신호 대 잡음 비율과 첨두주기(TP)를 이용하는 방법이 있다. 본 연구에서는 신호 대 잡음 비율, 첨두주기 및 레이다 이미지 해상도 비율(Rval > k)을 입력변수로 하는 인공신경망 알고리즘을 이용하여 유의파고 추정의 정확도를 향상시켰다. 개발된 알고리즘을 울진 후정해수욕장에서 초음파식 파고계로 측정한 유의파고의 시계열과 비교하여 정확도 향상을 확인하였다.

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 (A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction)

  • ;장성봉
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권3호
    • /
    • pp.71-80
    • /
    • 2021
  • 기계학습에서 정확한 데이터 예측을 위해서는 적절한 인공신경망 알고리즘을 선택해야 한다. 이러한 알고리즘에는 심층 신경망 (DNN), 반복 신경망 (RNN), 장단기 기억 (LSTM) 네트워크 및 게이트 반복 단위 (GRU) 신경망등을 들 수 있다. 개발자가 실험을 위해, 하나를 선택해야 하는 경우, 각 알고리즘의 성능에 대한 충분한 정보가 없었기 때문에, 직관에 의존할 수 밖에 없었다. 본 연구에서는 이러한 어려움을 완화하기 위해 실험을 통해 예측 오류(RMSE)와 처리 시간을 비교 평가 하였다. 각 알고리즘은 텐서플로우를 이용하여 구현하였으며, 세금 데이터를 사용하여 학습을 수행 하였다. 학습 된 모델을 사용하여, 세금 예측을 수행 하였으며, 실제값과의 비교를 통해 정확도를 측정 하였다. 또한, 활성화 함수와 다양한 최적화 함수들이 알고리즘에 미치는 영향을 비교 분석 하였다. 실험 결과, GRU 및 LSTM 알고리즘의 경우, RMSE(Root Mean Sqaure Error)는 0.12이고 R2값은 각각 0.78 및 0.75로 다른 알고리즘에 비해 더 낳은 성능을 보여 주었다. 기본 심층 신경망(DNN)의 경우, 처리 시간은 가장 낮지만 예측 오류는 0.163로 성능은 가장 낮게 측정 되었다. 최적화 알고리즘의 경우, 아담(Adam)이 오류 측면에서 최고의 성능을, 처리 시간 측면에서 최악의 성능을 보여 주었다. 본 연구의 연구결과는 데이터 예측을 위한 알고리즘 선택시, 개발자들에게 유용한 정보로 사용될 것으로 예상된다.

혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크 (Denoising Self-Attention Network for Mixed-type Data Imputation)

  • 이도훈;김한준;전종훈
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.135-144
    • /
    • 2021
  • 최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습 데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.33-42
    • /
    • 2022
  • 본 논문에서는 운전자한테 실시간으로 블랙 아이스 경고를 보내기 위해서 도로 영상에서 블랙 아이스 영역 분할을 위한 다중 척도 팽창 컨볼루션 특징 융합에 기반한 딥러닝 모델을 제안한다. 제안한 다중척도 팽창 컨볼루션 특징 융합 네트워크는 인코더 블록에 서로 다른 팽창 비율 컨볼루션을 병렬로 추가하고, 서로 다른 해상도 특징 맵에서 서로 다른 팽창 비율을 설정하고, 다중 단계 특징 정보가 함께 융합된다. 다중 척도 팽창 컨볼루션 특징 융합은 수용 영역을 확장함과 동시에 공간의 세부 정보를 잘 보존하고 팽창 컨볼루션의 효과성을 높임으로써 기존 모델보다 성능을 향상시킨다. 실험 결과를 통해 본 논문 제안한 네트워크 모델은 병렬 평창 컨볼루션 수가 증가함에 따라 성능이 향상되는 것을 알 수 있었다. 제안한 방법의 mIoU 값은 96.46%로 U-Net, FCN, PSPNet, ENet, LinkNet 등 기존 네트워크보다 높았다. 그리고 파라미터는 1,858K개로, 기존 LinkNet모델보다 6배로 축소하였다. Jetson Nano에서 실험 결과 보면, 제안한 방법의 FPS는 3.63로 실시간으로 블랙 아이스 영역을 실시간으로 분할 할 수 있었다.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.241-251
    • /
    • 2022
  • 화장품 및 뷰티산업에서 고객의 피부상태 진단과 관리는 중요한 필수기능이다. 소셜미디어 환경이 사회 전 분야에 확산되고 일반화되면서 피부 상태의 진단과 관리에 대한 다양하고 섬세한 고민과 요구 사항의 질문과 답변의 상호작용이 소셜미디어 커뮤니티에서 활발하게 다루어지고 있다. 그러나 소셜미디어 정보는 매우 다양하고 비정형적인 방대한 빅데이터이므로 적절한 피부상태 정보분석과 인공지능 기술을 접목한 지능화된 피부상태 진단 시스템이 필요하다. 본 논문에서는 소셜미디어의 텍스트 분석정보를 학습데이터로 가공하여 고객의 피부상태를 지능적으로 진단 및 관리하기 위한 피부상태진단시스템 SCDIS를 개발하였다. SCDIS에서는 딥러닝 기계학습 방법인 인공신경망 기술을 사용하여 자동적으로 피부상태 유형을 진단하는 인공신경망 모델 AnnTFIDF을 빌드업하여 사용하였다. 인공신경망 모델 AnnTFIDF의 성능은 테스트샘플 데이터를 사용하여 분석되었으며, 피부상태 유형 진단 예측 값의 정확성은 약 95%의 높은 성능을 나타내었다. 본 논문의 실험 및 성능분석결과를 통하여 SCDIS는 화장품 및 뷰티산업 분야의 피부상태 분석 및 진단 관리 과정에서 효율적으로 사용 가능한 지능화된 도구로 평가할 수 있다. 본 논문에서 제안된 시스템은 소셜미디어 기반의 새로운 환경에서 화장품 및 피부미용에 대한 사용자의 요구를 체계적으로 파악하고 진단하는 기초 기술로 사용 가능할 것이다. 그리고 이 연구는 새로운 기술 트렌드인 맞춤형 화장품제조와 소비자중심의 뷰티산업기술 수요를 해결하기 위한 기초 연구로 사용될 수 있을 것이다.

다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안 (Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting)

  • 박혜승;윤종욱;이호준;양현호
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.199-207
    • /
    • 2024
  • 지역 저수지들은 농업용수 공급의 중요한 수원공으로 가뭄과 같은 극단적 기후 조건을 대비하여 안정적인 저수율 관리가 필수적이다. 저수율 예측은 국지적 강우와 같은 지역적 기후 특성뿐만 아니라 작부시기를 포함하는 계절적 요인 등에 크게 영향을 받기 때문에 적절한 예측 모델을 선정하는 것만큼 입/출력 데이터 간 상관관계 파악이 무엇보다 중요하다. 이에 본 연구에서는 1991년부터 2022년까지의 전라북도 400여 개 저수지의 광범위한 다변량 데이터를 활용하여 각 저수지의 복잡한 수문학·기후학적 환경요인을 포괄적으로 반영한 저수율 예측 모델을 학습 및 검증하고, 각 입력 특성이 저수율 예측 성능에 미치는 영향력을 분석하고자 한다. 신경망 구조에 따른 저수율 예측 성능 개선이 아닌 다변량의 입력 데이터와 예측 성능 간의 상관관계에 초점을 맞추기 위하여 실험에 사용된 예측 모델로 합성곱신경망 또는 순환신경망과 같은 복잡한 형태가 아닌 완전연결계층, 배치정규화, 드롭아웃, 활성화 함수 등의 조합으로 구성된 기본적인 순방향 신경망을 채택하였다. 추가적으로 대부분의 기존 연구에서는 하루 단위의 단기 예측 성능만을 제시하고 있으며 이러한 단기 예측 방식은 10일, 한 달 단위 등 중장기적 예측이 필요한 실무환경에 적합하지 않기 때문에, 본 연구에서는 하루 단위 예측값을 다음 입력으로 사용하는 재귀적 방식을 통해 최대 한 달 뒤 저수율 예측 성능을 측정하였다. 실험을 통해 예측 기간에 따른 성능 변화 양상을 파악하였으며, Ablation study를 바탕으로 예측 모델의 각 입력 특성이 전체 성능에 끼치는 영향을 분석하였다.

디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서 (Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective)

  • 황윤민;홍성원
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.125-141
    • /
    • 2019
  • 알파고로 대변되는 딥러닝 기법의 등장으로 인공지능은 기업 경쟁우위 확보를 위한 디지털 트랜스포메이션의 핵심 주제로 급부상했다. 산업 내 인공지능 기반 디지털 트랜스포메이션 방향을 이해하기 위해서는 현재 진행 중인 인공지능 비즈니스 생태계 참여자들 유형 및 활동에 대한 명확한 이해가 선행되어야 한다. 따라서 본 연구는 다행위자 네트워크(Multi-actor network)관점에서 인공지능 비즈니스 생태계 내부와 외부 참여자들의 활동을 분석하고 플랫폼 전략 유형을 규명하였다. 인공지능 비즈니스 생태계 내부 세 개 계층(인프라스트럭처 & 하드웨어, 소프트웨어 & 애플리케이션, 서비스 & 데이터 계층)에서 사업자들은 네 가지 플랫폼 전략 유형으로(기술수직×비즈수평, 기술수직×비즈수직, 기술수평×비즈수평, 기술수평×비즈수직) 인공지능 비즈니스가 진행되고 있다. 인공지능 비즈니스 생태계 외부에는 다섯 행위자들이(사용자, 투자자, 정부 정책가, 학계 등 컨소시엄, 시민단체) 공존 및 지속가능한 인공지능 비즈니스 생태계를 지원하고 있다. 본 연구는 학술적으로 인공지능 비즈니스 생태계 분석 프레임워크 및 인공지능 플랫폼 전략 모델을 제시하였고, 실무적으로 플랫폼 관점의 인공지능 디지털 트랜스포메이션 전략 방향과 지속가능한 인공지능 비즈니스 생태계 조성을 위한 정부, 학계 등의 역할을 제시했다.

합성곱 신경망 기반 화재 인식 모델 최적화 연구: Layer Importance Evaluation 기반 접근법 (A Study on the Optimization of Fire Awareness Model Based on Convolutional Neural Network: Layer Importance Evaluation-Based Approach)

  • 진원;송미화
    • 정보처리학회 논문지
    • /
    • 제13권9호
    • /
    • pp.444-452
    • /
    • 2024
  • 본 연구는 Layer Importance Evaluation을 통해 도출된 화재 감지에 최적화된 딥러닝 아키텍처를 제안한다. 기존의 합성곱 신경망(Convolutional Neural Network, CNN) 기반 화재 감지 시스템의 불필요한 복잡성과 연산을 초래하는 문제점을 해결하기 위해, Layer Importance Evaluation 기법을 통해 가중치 및 활성화 값에 근거한 모델의 내부 레이어의 동작을 분석하고, 화재 감지에 기여도가 높은 레이어를 식별한 뒤, 식별한 레이어만으로 모델을 재구성하여, 기존 모델과의 성능 지표를 비교 분석하였다. Xception, VGG19, ResNet, EfficientNetB5 등 네 가지 전이 학습 모델을 사용하여 화재 데이터를 학습시킨 후, Layer Importance Evaluation기법을 적용하여 각 레이어의 가중치와 활성화 값을 분석한 뒤 기여도가 가장 높은 상위 랭크 레이어들을 선별하여 새로운 모델을 구축하였다. 연구 결과, 구현된 아키텍처는 기존 모델 대비 약 80% 가량 경량화 된 파라미터로도 동등한 성능을 유지하며, 약 3~5배가량 신속한 학습 속도를 가지면서도 기존의 복잡한 전이학습 모델에 비해 정확도, 손실, 혼동행렬 지표에서 동등한 성능을 출력함으로써, 화재 감시 장비의 효율성을 높이는 데 기여할 수 있음을 확인하였다.