• Title/Summary/Keyword: deep mixing

Search Result 222, Processing Time 0.027 seconds

Environmental Isotope Characteristics of $CO_2$-rich Water in the Kangwon Province (강원도지역 탄산수의 환경동위원소적 특성)

  • 최현수;고용권;김천수;배대석;윤성택
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.491-504
    • /
    • 2000
  • Environmental isotope $^{18}O$, $^{2}H$, $^{3}H$,$^{13}C$, $^{34}S$and $^{87}Sr/^{86}Sr$) studies on ${CO_2}$-rich waters in the Kangwon Province were carried out to elucidate the origin, residence time, water-rock interaction and mixing process of their. ${\delta}^{18}O$ and ${\delta}D$ data indicate that ${CO_2}$-rich waters were derived from the local meteoric water. It also shows that each type of ${CO_2}$-rich water has distinct isotopic composition and Na-${HCO_3}$ type water (-10.8 to -12.1${\textperthousand}$, ${\delta}^{18}O$ ) is lighter than other type waters. These depleted isotopic values supposedly indicate that, considering the altitude effect of isotope in Korea, the recharge area of Na-${HCO_3}$ type water can be estimated to be relatively higher in elevation than those of Ca-${HCO_3}$ and Ca-Na-${HCO_3}$ type waters. Tritium contents close to zero are observed in the Na-${HCO_3}$ type water, confirming a long residence time and the possibility of a ${CO_2}$ inflow into the aquifer at great depth. These isotope data also show that the Ca-${HCO_3}$ type water has undergone mixing process with surface water during ascending at depth, whereas Na-${HCO_3}$ type water was less mixed with surface waters. The carbon isotope data (-8.8 to +0.8 ${\textperthousand}$ ${\delta}^{13}C$) indicate that dissolved carbon in the ${CO_2}$-rich waters was possibly derived from deep seated ${CO_2}$ gas. The high ${\delta}^{34}S$ values (up to 38.1${\textperthousand}$) of dissolved sulfates suggest that sulfate reduction by microbial activity had occurred at depth. Strontium isotopic data ($^{87}Sr/^{86}Sr$) of ${CO_2}$-rich waters indicate that the chemistry of the ${CO_2}$-rich waters is determined by water-rock (granite) interaction.

  • PDF

An Analysis on Influences of Seasonal and Tidal Changes to Outfall Design and Management (조석이 방류관의 설계 및 운영에 미치는 영향 분석)

  • Kim, Ji-Yeon;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.259-268
    • /
    • 2004
  • For the last years, it has become hot issue such as disposal of the treated wastewater, which caused by increment of a population and industrial development at the coastal areas. The ocean outfall system discharges primary or secondary treated effluent into coastline or at the deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the see, surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. This paper deals ocean outfall design which effects to decision-making about marine environment management and wastewater treatment. In order to make predictions of dilution of discharged water and the trajectory of a plume, CORMIX has been used considering several elements including a seasonal and tidal changes. These solutions are strung together to provide basic data and general drawings for effective management of outfall.

The Accuracy of Satellite-composite GHRSST and Model-reanalysis Sea Surface Temperature Data at the Seas Adjacent to the Korean Peninsula (한반도 연안 위성합성 및 수치모델 재분석 해수면온도 자료의 정확도)

  • Baek, You-Hyun;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.213-232
    • /
    • 2019
  • This study evaluates the accuracy of four satellite-composite (OSTIA, AVHRR, G1SST, FNMONC-S) and three model-reanalysis (HYCOM, JCOPE2, FNMOC-M) daily sea surface temperature (SST) data around the Korean Peninsula (KP) using ocean buoy data from 2011-2016. The results reveal that OSTIA has the lowest root mean square error (RMSE; 0.68℃) and FNMOC-S/M has the highest correction coefficients (r = 0.993) compared with observations, while G1SST, JCOPE2, and AVHRR have relatively larger RMSEs and smaller correlations. The large RMSEs were found in the western coastal regions of the KP where water depth is shallow and tides are strong, such as Chilbaldo and Deokjeokdo, while low RMSEs were found in the East Sea and open oceans where water depth is relatively deep such as Donghae, Ulleungdo, and Marado. We found that the main sources of the large RMSEs, sometimes reaching up to 5℃, in SST data around the KP, can be attributed to rapid SST changes during events of strong tidal mixing, upwelling, and typhoon-induced mixing. The errors in the background SST fields which are used in data assimilations and satellite composites and the missing in-situ observations are also potential sources of large SST errors. These results suggest that both satellite and reanalysis SST data, which are believed to be true observation-based data, sometimes, can have significant inherent errors in specific regions around the KP and thus the use of such SST products should proceed with caution particularly when the aforementioned events occur.

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Composition of Rare Earth Elements in Northeast Pacific Surface Sediments, and their Potential as Rare Earth Elements Resources (북동태평양 Clarion-Clipperton 해역 표층 퇴적물의 희토류 조성 및 희토류 광상으로서의 잠재성)

  • Seo, Inah;Pak, Sang Joon;Kiseong, Hyeong;Kong, Gee-Soo;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.383-394
    • /
    • 2014
  • The surface sediments from the manganese nodule exploration area of Korea in the Clarion-Clipperton fracture zone were investigated to understand the resource potential of and emplacement mechanism for rare earth elements (REEs). The sediments are categorized into three lithological units (Unit I, II and III from top to bottom), but into two groups (Unit I/II and Unit III) based on the distribution pattern of REEs. The distribution pattern of REEs in Unit I/II is similar to that of Post-Archean Australian Shale (PAAS), but shows a negative Ce anomaly and enrichment in heavy REEs (HREEs). In Unit III, the HREE enrichment and Ce anomaly is much more remarkable than Unit I/II when normalized to PAAS, which are interpreted as resulting from the absorption of REEs from seawater by Fe oxyhydroxides that were transported along the buoyant plume from remotely-located hydrothermal vents. It is supported by the PAAS-normalized REE pattern of Unit III which is similar to those of seawater and East Pacific Rise sediments. Meanwhile, the PAAS-normalized REE pattern of Unit I/II is explained by the 4:1 mixing of terrestrial eolian sediment and Unit III from each, indicating the much smaller contribution of hydrothermal origin material to Unit I/II. The studied sediments have the potentiality of a low-grade and large tonnage REE resource. However, the mining of REE-bearing sediment needs a large size extra collecting, lifting and treatment system to dress and refine low-grade sediments if the sediment is exploited with manganese nodules. It is economically infeasible to develop low-grade REE sediments at this moment in time because the exploitation of REE-bearing sediments with manganese nodules increase the mining cost.

A Study on A Deep Learning Algorithm to Predict Printed Spot Colors (딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구)

  • Jun, Su Hyeon;Park, Jae Sang;Tae, Hyun Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea (황해 남동부 해역의 월별 용존무기탄소 재고 추정)

  • KIM, SO-YUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.194-210
    • /
    • 2022
  • The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.

Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean (남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화)

  • Jang, Yang-Hee;Khim, Boo-Keun;Shin, Hyoung-Chul;Sigman, Daniel M.;Wang, Yi;Hong, Chang-Su
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.407-418
    • /
    • 2008
  • Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

Understanding the Nutritional Sources of Gastropods and Anomura from the Mangrove Forest of Weno Island, Micronesia (마이크로네시아 웨노섬의 맹그로브 숲에 서식하는 고둥류 및 집게의 영양원에 대한 이해)

  • Ko, Ah-Ra;Kim, Min-Seob;Ju, Se-Jong
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.427-439
    • /
    • 2013
  • Carbon cycling and productivity within Weno Island of Micronesia enclosed by the coral reef may be likely self-maintained and insignificantly affected by the open ocean. Therefore, it is important to understand the role of the mangrove known as providing the organic matter and habitats for many organisms in this enclosed area. In order to trace the nutritional source of fauna (mostly invertebrates) in the mangrove forest of Weno island, we analyzed the fatty acid (FA) and carbon and nitrogen stable isotopes of potential nutritional sources (mangrove leaf & pneumatophore, seagrass leaf & root, surface sediment, and particulate organic matter (POM) in water) and consumers (4 gastropods and anomura). The mangrove and seagrass contained the abundance of 18:2${\omega}$6, and 18:3${\omega}$3, whereas FAs associated with phytoplankton and bacteria were accounted for a high proportion in the surface sediment and POM. FA composition of consumers was found to be similar to those of the surface sediment, mangrove, and seagrass. These were also confirmed through the mixing model of stable isotope for contribution of nutritional sources to consumers. Overall results with the feeding types of investigated mangrove fauna indicate that investigated mangrove fauna obtained their nutrition from the various sources, i.e. the mangrove for Littorina cf. scabra, the microalgae for Strombus sp., and omnivorous Pagurus sp. and Terebralia cf. palustris. However, it is obvious that the nutrition of most species living in the mangrove ecosystem is highly dependent on the mangrove, either directly or indirectly. More detail food-web structure and function of the mangrove ecosystem would be established with the analysis of additional fauna and flora.