• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.026 seconds

Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing (제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델)

  • Cho, Yeongchang;Go, Byung Gill;Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.419-430
    • /
    • 2020
  • This paper investigated methods to improve the forecasting accuracy of the electricity consumption prediction model. Currently, the demand for electricity has continuously been rising more than ever. Since the industrial sector uses more electricity than any other sectors, the importance of a more precise forecasting model for manufacturing sites has been highlighted to lower the excess energy production. We propose a double encoder-decoder model, which uses two separate encoders and one decoder, in order to adapt both long-term and short-term data for better forecasts. We evaluated our proposed model on our electricity power consumption dataset, which was collected in a manufacturing site of Sehong from January 1st, 2019 to June 30th, 2019 with 1 minute time interval. From the experiment, the double encoder-decoder model marked about 10% reduction in mean absolute error percentage compared to a conventional encoder-decoder model. This result indicates that the proposed model forecasts electricity consumption more accurately on manufacturing sites compared to an encoder-decoder model.

An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases (인공지능을 활용한 정책의사결정에 관한 탐색적 연구: 문제구조화 유형으로 살펴 본 성공과 실패 사례 분석)

  • Eun, Jong-Hwan;Hwang, Sung-Soo
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.47-66
    • /
    • 2020
  • The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.

Exotic Weeds Classification : Hierarchical Approach with Convolutional Neural Network (외래잡초 분류 : 합성곱 신경망 기반 계층적 구조)

  • Yu, Gwanghyun;Lee, Jaewon;Trong, Vo Hoang;Vu, Dang Thanh;Nguyen, Huy Toan;Lee, JooHwan;Shin, Dosung;Kim, Jinyoung
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.81-92
    • /
    • 2019
  • Weeds are a major object which is very harmful to crops. To remove the weeds effectively, we have to classify them accurately and use herbicides. As computing technology has developed, image-based machine learning methods have been studied in this field, specially convolutional neural network(CNN) based models have shown good performance in public image dataset. However, CNN with numerous training parameters and high computational amount. Thus, it works under high hardware condition of expensive GPUs in real application. To solve these problems, in this paper, a hierarchical architecture based deep-learning model is proposed. The experimental results show that the proposed model successfully classify 21 species of the exotic weeds. That is, the model achieve 97.2612% accuracy with a small number of parameters. Our proposed model with a few parameters is expected to be applicable to actual application of network based classification services.

End-to-end speech recognition models using limited training data (제한된 학습 데이터를 사용하는 End-to-End 음성 인식 모델)

  • Kim, June-Woo;Jung, Ho-Young
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.63-71
    • /
    • 2020
  • Speech recognition is one of the areas actively commercialized using deep learning and machine learning techniques. However, the majority of speech recognition systems on the market are developed on data with limited diversity of speakers and tend to perform well on typical adult speakers only. This is because most of the speech recognition models are generally learned using a speech database obtained from adult males and females. This tends to cause problems in recognizing the speech of the elderly, children and people with dialects well. To solve these problems, it may be necessary to retain big database or to collect a data for applying a speaker adaptation. However, this paper proposes that a new end-to-end speech recognition method consists of an acoustic augmented recurrent encoder and a transformer decoder with linguistic prediction. The proposed method can bring about the reliable performance of acoustic and language models in limited data conditions. The proposed method was evaluated to recognize Korean elderly and children speech with limited amount of training data and showed the better performance compared of a conventional method.

Spectogram analysis of active power of appliances and LSTM-based Energy Disaggregation (다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘)

  • Kim, Imgyu;Kim, Hyuncheol;Kim, Seung Yun;Shin, Sangyong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.21-28
    • /
    • 2021
  • In this study, we propose a deep learning-based NILM technique using actual measured power data for 5 kinds of home appliances and verify its effectiveness. For about 3 weeks, the active power of the central power measuring device and five kinds of home appliances (refrigerator, induction, TV, washing machine, air cleaner) was individually measured. The preprocessing method of the measured data was introduced, and characteristics of each household appliance were analyzed through spectogram analysis. The characteristics of each household appliance are organized into a learning data set. All the power data measured by the central power measuring device and 5 kinds of home appliances were time-series mapping, and training was performed using a LSTM neural network, which is excellent for time series data prediction. An algorithm that can disaggregate five types of energies using only the power data of the main central power measuring device is proposed.

Indian Research on Artificial Neural Networks: A Bibliometric Assessment of Publications Output during 1999-2018

  • Gupta, B.M.;Dhawan, S.M.
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.10 no.4
    • /
    • pp.29-46
    • /
    • 2020
  • The paper describes the quantitative and qualitative dimensions of artificial neural networks (ANN) in India in the global context. The study is based on research publications data (8260) as covered in the Scopus database during 1999-2018. ANN research in India registered 24.52% growth, averaged 11.95 citations per paper, and contributed 9.77% share to the global ANN research. ANN research is skewed as the top 10 countries account for 75.15% of global output. India ranks as the third most productive country in the world. The distribution of research by type of ANN networks reveals that Feed Forward Neural Network type accounted for the highest share (10.18% share), followed by Adaptive Weight Neural Network (5.38% share), Feed Backward Neural Network (2.54% share), etc. ANN research applications across subjects were the largest in medical science and environmental science (11.82% and 10.84% share respectively), followed by materials science, energy, chemical engineering and water resources (from 6.36% to 9.12%), etc. The Indian Institute of Technology, Kharagpur and the Indian Institute of Technology, Roorkee lead the country as the most productive organizations (with 289 and 264 papers). Besides, the Indian Institute of Technology, Kanpur (33.04 and 2.76) and Indian Institute of Technology, Madras (24.26 and 2.03) lead the country as the most impactful organizations in terms of citation per paper and relative citation index. P. Samui and T.N. Singh have been the most productive authors and G.P.S.Raghava (86.21 and 7.21) and K.P. Sudheer (84.88 and 7.1) have been the most impactful authors. Neurocomputing, International Journal of Applied Engineering Research and Applied Soft Computing topped the list of most productive journals.

Stock News Dataset Quality Assessment by Evaluating the Data Distribution and the Sentiment Prediction

  • Alasmari, Eman;Hamdy, Mohamed;Alyoubi, Khaled H.;Alotaibi, Fahd Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • This work provides a reliable and classified stocks dataset merged with Saudi stock news. This dataset allows researchers to analyze and better understand the realities, impacts, and relationships between stock news and stock fluctuations. The data were collected from the Saudi stock market via the Corporate News (CN) and Historical Data Stocks (HDS) datasets. As their names suggest, CN contains news, and HDS provides information concerning how stock values change over time. Both datasets cover the period from 2011 to 2019, have 30,098 rows, and have 16 variables-four of which they share and 12 of which differ. Therefore, the combined dataset presented here includes 30,098 published news pieces and information about stock fluctuations across nine years. Stock news polarity has been interpreted in various ways by native Arabic speakers associated with the stock domain. Therefore, this polarity was categorized manually based on Arabic semantics. As the Saudi stock market massively contributes to the international economy, this dataset is essential for stock investors and analyzers. The dataset has been prepared for educational and scientific purposes, motivated by the scarcity of data describing the impact of Saudi stock news on stock activities. It will, therefore, be useful across many sectors, including stock market analytics, data mining, statistics, machine learning, and deep learning. The data evaluation is applied by testing the data distribution of the categories and the sentiment prediction-the data distribution over classes and sentiment prediction accuracy. The results show that the data distribution of the polarity over sectors is considered a balanced distribution. The NB model is developed to evaluate the data quality based on sentiment classification, proving the data reliability by achieving 68% accuracy. So, the data evaluation results ensure dataset reliability, readiness, and high quality for any usage.

Prediction of Student's Interest on Sports for Classification using Bi-Directional Long Short Term Memory Model

  • Ahamed, A. Basheer;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.246-256
    • /
    • 2022
  • Recently, parents and teachers consider physical education as a minor subject for students in elementary and secondary schools. Physical education performance has become increasingly significant as parents and schools pay more attention to physical schooling. The sports mining with distribution analysis model considers different factors, including the games, comments, conversations, and connection made on numerous sports interests. Using different machine learning/deep learning approach, children's athletic and academic interests can be tracked over the course of their academic lives. There have been a number of studies that have focused on predicting the success of students in higher education. Sports interest prediction research at the secondary level is uncommon, but the secondary level is often used as a benchmark to describe students' educational development at higher levels. An Automated Student Interest Prediction on Sports Mining using DL Based Bi-directional Long Short-Term Memory model (BiLSTM) is presented in this article. Pre-processing of data, interest classification, and parameter tweaking are all the essential operations of the proposed model. Initially, data augmentation is used to expand the dataset's size. Secondly, a BiLSTM model is used to predict and classify user interests. Adagrad optimizer is employed for hyperparameter optimization. In order to test the model's performance, a dataset is used and the results are analysed using precision, recall, accuracy and F-measure. The proposed model achieved 95% accuracy on 400th instances, where the existing techniques achieved 93.20% accuracy for the same. The proposed model achieved 95% of accuracy and precision for 60%-40% data, where the existing models achieved 93% for accuracy and precision.

An Analysis of the Key Factors Affecting Apartment Sales Price in Gwangju, South Korea (광주광역시 아파트 매매가 영향요인 분석)

  • Lim, Sung Yeon;Ko, Chang Wan;Jeong, Young-Seon
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.62-73
    • /
    • 2022
  • Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.

CNN-Based Malware Detection Using Opcode Frequency-Based Image (Opcode 빈도수 기반 악성코드 이미지를 활용한 CNN 기반 악성코드 탐지 기법)

  • Ko, Seok Min;Yang, JaeHyeok;Choi, WonJun;Kim, TaeGuen
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.933-943
    • /
    • 2022
  • As the Internet develops and the utilization rate of computers increases, the threats posed by malware keep increasing. This leads to the demand for a system to automatically analyzes a large amount of malware. In this paper, an automatic malware analysis technique using a deep learning algorithm is introduced. Our proposed method uses CNN (Convolutional Neural Network) to analyze the malicious features represented as images. To reflect semantic information of malware for detection, our method uses the opcode frequency data of binary for image generation, rather than using bytes of binary. As a result of the experiments using the datasets consisting of 20,000 samples, it was found that the proposed method can detect malicious codes with 91% accuracy.