The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.7
/
pp.865-870
/
2018
A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.281-284
/
2018
본 논문에서는 machine reading 분야에서 기존의 long short-term memory (LSTM) 모델이 가지는 문제점을 해결하는 새로운 네트워크를 제안하고자 한다. 기존의 LSTM 모델은 크게 두가지 제한점을 가지는데, 그 중 첫째는 forget gate로 인해 잊혀진 중요한 문맥 정보들이 복원될 수 있는 방법이 없다는 것이다. 자연어에서 과거의 문맥 정보에 따라 현재의 단어의 의미가 크게 좌지우지될 수 있으므로 올바른 문장의 이해를 위해 필요한 과거 문맥의 정보 유지는 필수적이다. 또 다른 문제는 자연어는 그 자체로 단어들 간의 복잡한 구조를 통해 문장이 이루어지는 반면 기존의 시계열 모델들은 단어들 간의 관계를 추론할 수 있는 직접적인 방법을 가지고 있지 않다는 것이다. 본 논문에서는 최근 딥 러닝 분야에서 널리 쓰이는 attention mechanism과 본 논문이 제안하는 restore gate를 결합한 네트워크를 통해 상기 문제를 해결하고자 한다. 본 논문의 실험에서는 기존의 다른 시계열 모델들과 비교를 통해 제안한 모델의 우수성을 확인하였다.
본 연구는 비접촉식 센서 기반의 웨어러블 디바이스를 이용한 딥러닝 기반의 제스처 인식에 대한 연구이다. 이를 위하여 Flexible MSG 센서를 기반으로 한 Flexible Epidermal Tactile Sensor를 사용하였으며, Flexible Epidermal Tactile Sensor는 손, 손가락 제스처를 취했을 때 손목, 손가락과 연결되어 있는 근육들의 움직임에 따라 발생하는 피부 표면의 전극을 취득하는 센서이다. 실험을 위하여 7가지 손, 손가락 제스처를 정의하였으며, 손목의 꺾임, 손목의 뒤틀림, 손가락의 오므림과 펴짐, 아무 동작도 취하지 않은 기본 상태에 대한 제스처로 정의하였다. 실험 데이터 수집에는 손목이나 손가락에 부상, 장애등이 없는 일반적인 8명의 참가자가 참가하였으며 각각 한 제스처에 대하여 20번씩 반복하여 1120개의 샘플을 수집하였다. 입력신호에 대한 제스처를 학습하기 위해 본 논문에서는 1차원 Convolutional Neural Network를 제안하였으며, 성능 비교를 위해 신호의 크기를 반영하는 특징벡터인 Integral Absolute Value와 Difference Absolute Mean Value를 입력신호에서 추출하고 Support Vector Machine을 사용하여 본 논문에서 제안한 1차원 CNN과 성능비교를 하였다. 그 결과 본 논문에서 제안한 1차원 CNN의 분류 정확도가 우수한 성능을 나타냈다.
We consider the stale problem which makes the training speed slow in the field of deep learning. The problem can be formulated as a single-machine scheduling problem with generalized due dates in which the objective is to minimize the total earliness and tardiness. We show that the problem can be solved in polynomial time if the orders of the small and the large jobs in an optimal schedule are known in advance.
Journal of Information Technology Applications and Management
/
v.27
no.6
/
pp.171-180
/
2020
With the recent increase in asthma, asthma has become recognized as one of the diseases. The perception that bronchial asthma is a chronic disease and requires treatment has been strengthened. In addition, asthma is recognized as a dangerous disease due to environmental changes and efforts are made to minimize these risks. However, the environmental impact on asthma is hardly a factor that individuals in asthmatic patients can cope with. Therefore, this study was conducted to see if the asthma disease could be replaced by the individual efforts of asthma patients. In particular, since the management of asthma is important during adolescence, we conducted research on asthma in teenagers. Utilizing support vector machines, artificial neural networks and deep learning techniques that have recently drawn attention, we propose models to predict the asthma of teenagers. The study also provides guidelines to avoid factors that can cause asthma in teenagers.
Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.
Journal of Advanced Information Technology and Convergence
/
v.10
no.2
/
pp.139-151
/
2020
Entity name recognition is a part of information extraction that extracts entity names from documents and classifies the types of extracted entity names. Entity name recognition technologies are widely used in natural language processing, such as information retrieval, machine translation, and query response systems. Various deep learning-based models exist to improve entity name recognition performance, but studies that compared and analyzed these models on Korean data are insufficient. In this paper, we compare and analyze the performance of CRF, LSTM-CRF, BiLSTM-CRF, and BERT, which are actively used to identify entity names using Korean data. Also, we compare and evaluate whether embedding models, which are variously used in recent natural language processing tasks, can affect the entity name recognition model's performance improvement. As a result of experiments on patent data and Korean corpus, it was confirmed that the BiLSTM-CRF using FastText method showed the highest performance.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.490-495
/
2021
표준어와 방언사이에는 위계가 존재하지 않고 열등하지 않다는 사상을 기반으로 방언을 보존하기 위한 다양한 노력들이 이루어지고있다. 또한 동일한 국가내에서 표준어와 방언간의 의사소통이 잘 이루어져야한다. 본 논문은 방언 연구보존과 의사소통의 중요성을 바탕으로 한국어 방언 기계번역 연구를 진행하였다. 대표적인 방언 중 하나인 제주어와 더불어 강원어, 경상어, 전라어, 충청어 기반의 기계번역 연구를 진행하였다. 공개된 AI Hub 데이터를 바탕으로 Transformer기반 copy mechanism을 적용하여 방언 기계번역의 성능을 높이는 모델링 연구를 진행하였으며 모델배포의 효율성을 위하여 Many-to-one기반 universal한 방언 기계번역기를 개발하였고 이를 one-to-one 모델과의 성능비교를 진행하였다. 실험결과 copy mechanism이 방언 기계번역 모델에 매우 효과적인 요소임을 알 수 있었다.
Yongyong Wang;Qixia Jia;Tingting Deng;H. Elhosiny Ali
Earthquakes and Structures
/
v.24
no.2
/
pp.111-126
/
2023
Highly reliable and versatile methods artificial intelligence (AI) have found multiple application in the different fields of science, engineering and health care system. In the present study, we aim to utilize AI method to investigated vibrations in the human leg bone. In this regard, the bone geometry is simplified as a thick cylindrical shell structure. The deep neural network (DNN) is selected for prediction of natural frequency and critical buckling load of the bone cylindrical model. Training of the network is conducted with results of the numerical solution of the governing equations of the bone structure. A suitable optimization algorithm is selected for minimizing the loss function of the DNN. Generalized differential quadrature method (GDQM), and Hamilton's principle are used for solving and obtaining the governing equations of the system. As well as this, in the results section, with the aid of AI some predictions for improving the behaviors of the various sport systems will be given in detail.
Photovoltaic generation which has unlimited energy sources are very intermittent because they depend on the weather. Therefore, it is necessary to get accurate generation prediction with reducing the uncertainty of photovoltaic generation and improvement of the economics. The Meteorological Agency predicts weather factors for three days, but doesn't predict the sunshine and solar radiation that are most correlated with the prediction of photovoltaic generation. In this study, we predict sunshine and solar radiation using weather, precipitation, wind direction, wind speed, humidity, and cloudiness which is forecasted for three days at Meteorological Agency. The photovoltaic generation forecasting model is proposed by using predicted solar radiation and sunshine. As a result, the proposed model showed better results in the error rate indexes such as MAE, RMSE, and MAPE than the model that predicts photovoltaic generation without radiation and sunshine. In addition, DNN showed a lower error rate index than using SVM, which is a type of machine learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.