Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.6
/
pp.1139-1150
/
2022
With the rapid development of SW Industry, softwares are everywhere in our daily life. The number of vulnerabilities are also increasing with a large amount of newly developed code. Vulnerabilities can be exploited by hackers, resulting the disclosure of privacy and threats to the safety of property and life. In particular, since the large numbers of increasing code, manually analyzed by expert is not enough anymore. Machine learning has shown high performance in object identification or classification task. Vulnerability detection is also suitable for machine learning, as a reuslt, many studies tried to use RNN-based model to detect vulnerability. However, the RNN model is also has limitation that as the code is longer, the earlier can not be learned well. In this paper, we proposed a novel method which applied BERT to detect vulnerability. The accuracy was 97.5%, which increased by 1.5%, and the efficiency also increased by 69% than Vuldeepecker.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.861-866
/
2022
Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.19-27
/
2022
In this study, we propose a language and platform to describe and manage the MLOps(Machine Learning Operations) workflow for time series data anomaly detection. Time series data is collected in many fields, such as IoT sensors, system performance indicators, and user access. In addition, it is used in many applications such as system monitoring and anomaly detection. In order to perform prediction and anomaly detection of time series data, the MLOps platform that can quickly and flexibly apply the analyzed model to the production environment is required. Thus, we developed Python-based AI/ML Modeling Language (AMML) to easily configure and execute MLOps workflows. Python is widely used in data analysis. The proposed MLOps platform can extract and preprocess time series data from various data sources (R-DB, NoSql DB, Log File, etc.) using AMML and predict it through a deep learning model. To verify the applicability of AMML, the workflow for generating a transformer oil temperature prediction deep learning model was configured with AMML and it was confirmed that the training was performed normally.
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.347-353
/
2023
Currently, soldiers enlisted in the military (Army) are receiving measurements (automatic, manual) of body parts and trying on sample clothing at boot training centers, and then receiving clothing in the desired size. Due to the low accuracy of the measured size during the measurement process, in the military, which uses a relatively more detailed sizing system than civilian casual clothes, the supplied clothes do not fit properly, so the frequency of changing the clothes is very frequent. In addition, there is a problem in that inventory is managed inefficiently by applying the measurement system based on the old generation body shape data collected more than a decade ago without reflecting the western-changed body type change of the MZ generation. That is, military uniforms of the necessary size are insufficient, and many unnecessary-sized military uniforms are in stock. Therefore, in order to reduce the frequency of clothing replacement and improve the efficiency of stock management, deep learning-based automatic measurement of body size, big data analysis, and machine learning-based "Personalized Combat Uniform Automatic Recommendation System for Enlisted Soldiers" is proposed.
Journal of the Korea Society of Computer and Information
/
v.29
no.5
/
pp.11-20
/
2024
This study presents TabNet, a novel deep learning method, to enhance corporate credit rating accuracy amidst growing financial market uncertainties due to technological advancements. By analyzing data from major Korean stock markets, the research constructs a credit rating prediction model using TabNet. Comparing it with traditional machine learning, TabNet proves superior, achieving a Precision of 0.884 and an F1 score of 0.895. It notably reduces misclassification of high-risk companies as low-risk, emphasizing its potential as a vital tool for financial institutions in credit risk management and decision-making.
The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.
Liang Chen;Jiankun Li;Rongyu Pei;Zhenqing Su;Ziyang Liu
East Asian Economic Review
/
v.28
no.3
/
pp.359-388
/
2024
With the escalation of global trade, the Chinese commodity futures market has ascended to a pivotal role within the international shipping landscape. The Shanghai Containerized Freight Index (SCFI), a leading indicator of the shipping industry's health, is particularly sensitive to the vicissitudes of the Chinese commodity futures sector. Nevertheless, a significant research gap exists regarding the application of Chinese commodity futures prices as predictive tools for the SCFI. To address this gap, the present study employs a comprehensive dataset spanning daily observations from March 24, 2017, to May 27, 2022, encompassing a total of 29,308 data points. We have crafted an innovative deep learning model that synergistically combines Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures. The outcomes show that the CNN-LSTM model does a great job of finding the nonlinear dynamics in the SCFI dataset and accurately capturing its long-term temporal dependencies. The model can handle changes in random sample selection, data frequency, and structural shifts within the dataset. It achieved an impressive R2 of 96.6% and did better than the LSTM and CNN models that were used alone. This research underscores the predictive prowess of the Chinese futures market in influencing the Shipping Cost Index, deepening our understanding of the intricate relationship between the shipping industry and the financial sphere. Furthermore, it broadens the scope of machine learning applications in maritime transportation management, paving the way for SCFI forecasting research. The study's findings offer potent decision-support tools and risk management solutions for logistics enterprises, shipping corporations, and governmental entities.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.97-104
/
2024
This paper proposes a method for classifying the grade of stainless steel using a portable NIR(Near Infrared Ray) spectrometer and a CNN(Convolutional Neural Network) deep learning model. Traditionally, methods for classifying stainless steel grades have included chemical analysis, magnetic testing, molybdenum spot tests, and portable XRF devices. In addition, a classification method using a machine learning model with element concentration and heat treatment temperature as parameters was presented in the paper. However, these methods are limited in their application to everyday products, such as kitchenware and cookware, due to the need for reagents, specialized equipment, or reliance on professional services. To address these limitations, this paper proposes a simple method for classifying the grade of stainless steel using a NIR spectrometer and a CNN model. If the method presented in this paper is installed on a portable device as an on-device in the future, it will be possible to determine the grade of stainless steel used in the product, and to determine on-site whether a product made of low-cost material has been disguised as a high-cost product.
Jong Hyun Shin;Sun Ju Kim;Gwanghun Kim;Hang-Rae Kim;Kwan Soo Ko
Journal of Microbiology and Biotechnology
/
v.34
no.10
/
pp.2033-2040
/
2024
Deep learning presents a promising approach to complex biological classifications, contingent upon the availability of well-curated datasets. This study addresses the challenge of analyzing three-dimensional protein structures by introducing a novel pipeline that utilizes open-source tools to convert protein structures into a format amenable to computational analysis. Applying a two-dimensional convolutional neural network (CNN) to a dataset of 12,143 avian influenza virus genomes from 64 countries, encompassing 119 hemagglutinin (HA) and neuraminidase (NA) types, we achieved significant classification accuracy. The pathogenicity was determined based on the presence of H5 or H7 subtypes, and our models, ranging from zero to six mid-layers, indicated that a four-layer model most effectively identified highly pathogenic strains, with accuracies over 0.9. To enhance our approach, we incorporated Principal Component Analysis (PCA) for dimensionality reduction and one-class SVM for abnormality detection, improving model robustness through bootstrapping. Furthermore, the K-nearest neighbor (K-NN) algorithm was fine-tuned via hyperparameter optimization to corroborate the findings. The PCA identified distinct clustering for pathogenic HA, yielding an AUC of up to 0.85. The optimized K-NN model demonstrated an impressive accuracy between 0.96 and 0.97. These combined methodologies underscore our deep learning framework's capacity for rapid and precise identification of pathogenic avian influenza strains, thus providing a critical tool for managing global avian influenza threats.
In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.