• Title/Summary/Keyword: deep machine learning

Search Result 1,093, Processing Time 0.025 seconds

A BERT-Based Deep Learning Approach for Vulnerability Detection (BERT를 이용한 딥러닝 기반 소스코드 취약점 탐지 방법 연구)

  • Jin, Wenhui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1139-1150
    • /
    • 2022
  • With the rapid development of SW Industry, softwares are everywhere in our daily life. The number of vulnerabilities are also increasing with a large amount of newly developed code. Vulnerabilities can be exploited by hackers, resulting the disclosure of privacy and threats to the safety of property and life. In particular, since the large numbers of increasing code, manually analyzed by expert is not enough anymore. Machine learning has shown high performance in object identification or classification task. Vulnerability detection is also suitable for machine learning, as a reuslt, many studies tried to use RNN-based model to detect vulnerability. However, the RNN model is also has limitation that as the code is longer, the earlier can not be learned well. In this paper, we proposed a novel method which applied BERT to detect vulnerability. The accuracy was 97.5%, which increased by 1.5%, and the efficiency also increased by 69% than Vuldeepecker.

Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost (최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측)

  • Kim, Chayoung;Kim, Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.861-866
    • /
    • 2022
  • Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.19-27
    • /
    • 2022
  • In this study, we propose a language and platform to describe and manage the MLOps(Machine Learning Operations) workflow for time series data anomaly detection. Time series data is collected in many fields, such as IoT sensors, system performance indicators, and user access. In addition, it is used in many applications such as system monitoring and anomaly detection. In order to perform prediction and anomaly detection of time series data, the MLOps platform that can quickly and flexibly apply the analyzed model to the production environment is required. Thus, we developed Python-based AI/ML Modeling Language (AMML) to easily configure and execute MLOps workflows. Python is widely used in data analysis. The proposed MLOps platform can extract and preprocess time series data from various data sources (R-DB, NoSql DB, Log File, etc.) using AMML and predict it through a deep learning model. To verify the applicability of AMML, the workflow for generating a transformer oil temperature prediction deep learning model was configured with AMML and it was confirmed that the training was performed normally.

CNN and SVM-Based Personalized Clothing Recommendation System: Focused on Military Personnel (CNN 및 SVM 기반의 개인 맞춤형 피복추천 시스템: 군(軍) 장병 중심으로)

  • Park, GunWoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.347-353
    • /
    • 2023
  • Currently, soldiers enlisted in the military (Army) are receiving measurements (automatic, manual) of body parts and trying on sample clothing at boot training centers, and then receiving clothing in the desired size. Due to the low accuracy of the measured size during the measurement process, in the military, which uses a relatively more detailed sizing system than civilian casual clothes, the supplied clothes do not fit properly, so the frequency of changing the clothes is very frequent. In addition, there is a problem in that inventory is managed inefficiently by applying the measurement system based on the old generation body shape data collected more than a decade ago without reflecting the western-changed body type change of the MZ generation. That is, military uniforms of the necessary size are insufficient, and many unnecessary-sized military uniforms are in stock. Therefore, in order to reduce the frequency of clothing replacement and improve the efficiency of stock management, deep learning-based automatic measurement of body size, big data analysis, and machine learning-based "Personalized Combat Uniform Automatic Recommendation System for Enlisted Soldiers" is proposed.

A Study on Predicting Credit Ratings of Korean Companies using TabNet

  • Hyeokjin Choi;Gyeongho Jung;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2024
  • This study presents TabNet, a novel deep learning method, to enhance corporate credit rating accuracy amidst growing financial market uncertainties due to technological advancements. By analyzing data from major Korean stock markets, the research constructs a credit rating prediction model using TabNet. Comparing it with traditional machine learning, TabNet proves superior, achieving a Precision of 0.884 and an F1 score of 0.895. It notably reduces misclassification of high-risk companies as low-risk, emphasizing its potential as a vital tool for financial institutions in credit risk management and decision-making.

Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future

  • Minjae Yoon;Jin Joo Park;Taeho Hur;Cam-Hao Hua;Musarrat Hussain;Sungyoung Lee;Dong-Ju Choi
    • International Journal of Heart Failure
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.

Shanghai Containerised Freight Index Forecasting Based on Deep Learning Methods: Evidence from Chinese Futures Markets

  • Liang Chen;Jiankun Li;Rongyu Pei;Zhenqing Su;Ziyang Liu
    • East Asian Economic Review
    • /
    • v.28 no.3
    • /
    • pp.359-388
    • /
    • 2024
  • With the escalation of global trade, the Chinese commodity futures market has ascended to a pivotal role within the international shipping landscape. The Shanghai Containerized Freight Index (SCFI), a leading indicator of the shipping industry's health, is particularly sensitive to the vicissitudes of the Chinese commodity futures sector. Nevertheless, a significant research gap exists regarding the application of Chinese commodity futures prices as predictive tools for the SCFI. To address this gap, the present study employs a comprehensive dataset spanning daily observations from March 24, 2017, to May 27, 2022, encompassing a total of 29,308 data points. We have crafted an innovative deep learning model that synergistically combines Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures. The outcomes show that the CNN-LSTM model does a great job of finding the nonlinear dynamics in the SCFI dataset and accurately capturing its long-term temporal dependencies. The model can handle changes in random sample selection, data frequency, and structural shifts within the dataset. It achieved an impressive R2 of 96.6% and did better than the LSTM and CNN models that were used alone. This research underscores the predictive prowess of the Chinese futures market in influencing the Shipping Cost Index, deepening our understanding of the intricate relationship between the shipping industry and the financial sphere. Furthermore, it broadens the scope of machine learning applications in maritime transportation management, paving the way for SCFI forecasting research. The study's findings offer potent decision-support tools and risk management solutions for logistics enterprises, shipping corporations, and governmental entities.

The Method for Classifying Stainless Steel Grades in Products Using Portable NIR Spectrometer and CNN

  • Ju-Hoon Jang;In-Yeop Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.97-104
    • /
    • 2024
  • This paper proposes a method for classifying the grade of stainless steel using a portable NIR(Near Infrared Ray) spectrometer and a CNN(Convolutional Neural Network) deep learning model. Traditionally, methods for classifying stainless steel grades have included chemical analysis, magnetic testing, molybdenum spot tests, and portable XRF devices. In addition, a classification method using a machine learning model with element concentration and heat treatment temperature as parameters was presented in the paper. However, these methods are limited in their application to everyday products, such as kitchenware and cookware, due to the need for reagents, specialized equipment, or reliance on professional services. To address these limitations, this paper proposes a simple method for classifying the grade of stainless steel using a NIR spectrometer and a CNN model. If the method presented in this paper is installed on a portable device as an on-device in the future, it will be possible to determine the grade of stainless steel used in the product, and to determine on-site whether a product made of low-cost material has been disguised as a high-cost product.

Machine Learning Using Template-Based-Predicted Structure of Haemagglutinin Predicts Pathogenicity of Avian Influenza

  • Jong Hyun Shin;Sun Ju Kim;Gwanghun Kim;Hang-Rae Kim;Kwan Soo Ko
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.10
    • /
    • pp.2033-2040
    • /
    • 2024
  • Deep learning presents a promising approach to complex biological classifications, contingent upon the availability of well-curated datasets. This study addresses the challenge of analyzing three-dimensional protein structures by introducing a novel pipeline that utilizes open-source tools to convert protein structures into a format amenable to computational analysis. Applying a two-dimensional convolutional neural network (CNN) to a dataset of 12,143 avian influenza virus genomes from 64 countries, encompassing 119 hemagglutinin (HA) and neuraminidase (NA) types, we achieved significant classification accuracy. The pathogenicity was determined based on the presence of H5 or H7 subtypes, and our models, ranging from zero to six mid-layers, indicated that a four-layer model most effectively identified highly pathogenic strains, with accuracies over 0.9. To enhance our approach, we incorporated Principal Component Analysis (PCA) for dimensionality reduction and one-class SVM for abnormality detection, improving model robustness through bootstrapping. Furthermore, the K-nearest neighbor (K-NN) algorithm was fine-tuned via hyperparameter optimization to corroborate the findings. The PCA identified distinct clustering for pathogenic HA, yielding an AUC of up to 0.85. The optimized K-NN model demonstrated an impressive accuracy between 0.96 and 0.97. These combined methodologies underscore our deep learning framework's capacity for rapid and precise identification of pathogenic avian influenza strains, thus providing a critical tool for managing global avian influenza threats.

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).