• Title/Summary/Keyword: deep machine learning

Search Result 1,093, Processing Time 0.024 seconds

License Plate Detection and Recognition Algorithm using Deep Learning (딥러닝을 이용한 번호판 검출과 인식 알고리즘)

  • Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.642-651
    • /
    • 2019
  • One of the most important research topics on intelligent transportation systems in recent years is detecting and recognizing a license plate. The license plate has a unique identification data on vehicle information. The existing vehicle traffic control system is based on a stop and uses a loop coil as a method of vehicle entrance/exit recognition. The method has the disadvantage of causing traffic jams and rising maintenance costs. We propose to exploit differential image of camera background instead of loop coil as an entrance/exit recognition method of vehicles. After entrance/exit recognition, we detect the candidate images of license plate using the morphological characteristics. The license plate can finally be detected using SVM(Support Vector Machine). Letter and numbers of the detected license plate are recognized using CNN(Convolutional Neural Network). The experimental results show that the proposed algorithm has a higher recognition rate than the existing license plate recognition algorithm.

Machine Learning-based Stroke Risk Prediction using Public Big Data (공공빅데이터를 활용한 기계학습 기반 뇌졸중 위험도 예측)

  • Jeong, Sunwoo;Lee, Minji;Yoo, Sunyong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2021
  • This paper presents a machine learning model that predicts stroke risks in atrial fibrillation patients using public big data. As the training data, 68 independent variables including demographic, medical history, health examination were collected from the Korean National Health Insurance Service. To predict stroke incidence in patients with atrial fibrillation, we applied deep neural network. We firstly verify the performance of conventional statistical models (CHADS2, CHA2DS2-VASc). Then we compared proposed model with the statistical models for various hyperparameters. Accuracy and area under the receiver operating characteristic (AUROC) were mainly used as indicators for performance evaluation. As a result, the model using batch normalization showed the highest performance, which recorded better performance than the statistical model.

Considerations for Applying Korean Natural Language Processing Technology in Records Management (기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항)

  • Haklae, Kim
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.4
    • /
    • pp.129-149
    • /
    • 2022
  • Records have temporal characteristics, including the past and present; linguistic characteristics not limited to a specific language; and various types categorized in a complex way. Processing records such as text, video, and audio in the life cycle of records' creation, preservation, and utilization entails exhaustive effort and cost. Primary natural language processing (NLP) technologies, such as machine translation, document summarization, named-entity recognition, and image recognition, can be widely applied to electronic records and analog digitization. In particular, Korean deep learning-based NLP technologies effectively recognize various record types and generate record management metadata. This paper provides an overview of Korean NLP technologies and discusses considerations for applying NLP technology in records management. The process of using NLP technologies, such as machine translation and optical character recognition for digital conversion of records, is introduced as an example implemented in the Python environment. In contrast, a plan to improve environmental factors and record digitization guidelines for applying NLP technology in the records management field is proposed for utilizing NLP technology.

A Technical Analysis on Deep Learning based Image and Video Compression (딥 러닝 기반의 이미지와 비디오 압축 기술 분석)

  • Cho, Seunghyun;Kim, Younhee;Lim, Woong;Kim, Hui Yong;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.383-394
    • /
    • 2018
  • In this paper, we investigate image and video compression techniques based on deep learning which are actively studied recently. The deep learning based image compression technique inputs an image to be compressed in the deep neural network and extracts the latent vector recurrently or all at once and encodes it. In order to increase the image compression efficiency, the neural network is learned so that the encoded latent vector can be expressed with fewer bits while the quality of the reconstructed image is enhanced. These techniques can produce images of superior quality, especially at low bit rates compared to conventional image compression techniques. On the other hand, deep learning based video compression technology takes an approach to improve performance of the coding tools employed for existing video codecs rather than directly input and process the video to be compressed. The deep neural network technologies introduced in this paper replace the in-loop filter of the latest video codec or are used as an additional post-processing filter to improve the compression efficiency by improving the quality of the reconstructed image. Likewise, deep neural network techniques applied to intra prediction and encoding are used together with the existing intra prediction tool to improve the compression efficiency by increasing the prediction accuracy or adding a new intra coding process.

Punching Motion Generation using Reinforcement Learning and Trajectory Search Method (경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법)

  • Park, Hyun-Jun;Choi, WeDong;Jang, Seung-Ho;Hong, Jeong-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

Effects of Preprocessing and Feature Extraction on CNN-based Fire Detection Performance (전처리와 특징 추출이 CNN기반 화재 탐지 성능에 미치는 효과)

  • Lee, JeongHwan;Kim, Byeong Man;Shin, Yoon Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • Recently, the development of machine learning technology has led to the application of deep learning technology to existing image based application systems. In this context, some researches have been made to apply CNN (Convolutional Neural Network) to the field of fire detection. To verify the effects of existing preprocessing and feature extraction methods on fire detection when combined with CNN, in this paper, the recognition performance and learning time are evaluated by changing the VGG19 CNN structure while gradually increasing the convolution layer. In general, the accuracy is better when the image is not preprocessed. Also it's shown that the preprocessing method and the feature extraction method have many benefits in terms of learning speed.

Hyperspectral Image Classification using EfficientNet-B4 with Search and Rescue Operation Algorithm

  • S.Srinivasan;K.Rajakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.213-219
    • /
    • 2023
  • In recent years, popularity of deep learning (DL) is increased due to its ability to extract features from Hyperspectral images. A lack of discrimination power in the features produced by traditional machine learning algorithms has resulted in poor classification results. It's also a study topic to find out how to get excellent classification results with limited samples without getting overfitting issues in hyperspectral images (HSIs). These issues can be addressed by utilising a new learning network structure developed in this study.EfficientNet-B4-Based Convolutional network (EN-B4), which is why it is critical to maintain a constant ratio between the dimensions of network resolution, width, and depth in order to achieve a balance. The weight of the proposed model is optimized by Search and Rescue Operations (SRO), which is inspired by the explorations carried out by humans during search and rescue processes. Tests were conducted on two datasets to verify the efficacy of EN-B4, with Indian Pines (IP) and the University of Pavia (UP) dataset. Experiments show that EN-B4 outperforms other state-of-the-art approaches in terms of classification accuracy.

Structuring of Unstructured SNS Messages on Rail Services using Deep Learning Techniques

  • Park, JinGyu;Kim, HwaYeon;Kim, Hyoung-Geun;Ahn, Tae-Ki;Yi, Hyunbean
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents a structuring process of unstructured social network service (SNS) messages on rail services. We crawl messages about rail services posted on SNS and extract keywords indicating date and time, rail operating company, station name, direction, and rail service types from each message. Among them, the rail service types are classified by machine learning according to predefined rail service types, and the rest are extracted by regular expressions. Words are converted into vector representations using Word2Vec and a conventional Convolutional Neural Network (CNN) is used for training and classification. For performance measurement, our experimental results show a comparison with a TF-IDF and Support Vector Machine (SVM) approach. This structured information in the database and can be easily used for services for railway users.

Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data

  • Dang, Hung V.;Raza, Mohsin;Tran-Ngoc, H.;Bui-Tien, T.;Nguyen, Huan X.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.495-508
    • /
    • 2021
  • This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.

Deep Learning based Dynamic Taint Detection Technique for Binary Code Vulnerability Detection (바이너리 코드 취약점 탐지를 위한 딥러닝 기반 동적 오염 탐지 기술)

  • Kwang-Man Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2023
  • In recent years, new and variant hacking of binary codes has increased, and the limitations of techniques for detecting malicious codes in source programs and defending against attacks are often exposed. Advanced software security vulnerability detection technology using machine learning and deep learning technology for binary code and defense and response capabilities against attacks are required. In this paper, we propose a malware clustering method that groups malware based on the characteristics of the taint information after entering dynamic taint information by tracing the execution path of binary code. Malware vulnerability detection was applied to a three-layered Few-shot learning model, and F1-scores were calculated for each layer's CPU and GPU. We obtained 97~98% performance in the learning process and 80~81% detection performance in the test process.