• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.022 seconds

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

Forecasting Innovation Performance via Deep Learning Algorithm : A Case of Korean Manufacturing Industry (빅데이터 분석방법을 활용한 제조업 혁신성과예측 방법에 대한 연구 : 딥 러닝 알고리즘을 중심으로)

  • Hwang, Jeong-jae;Kim, Jae Young;Park, Jaemin
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.818-837
    • /
    • 2018
  • Technological innovation has inherent difficulties, largely due to the uncertainties of technology. Thus, the forecasting methodology to reduce the risk of uncertainty in the innovation process has been presented both in quantitative and qualitative fields. On the other hand, big data and artificial intelligence have attracted great interest recently, and deep learning, which is one of the algorithms of AlphaGo, is showing excellent performance. In this study, deep learning methodology was applied to the prediction of innovation performance. To make the prediction model, we used KIS 2016 data. The input factors were importance of information source and innovation objectives and the output factor was innovation performance index, which was calculated for this study. As a result of the analysis, it can be confirmed that the accuracy of prediction is improved compared with the previous studies. As learning progressed, the degree of freedom of prediction also improved.

Souce Code Identification Using Deep Neural Network (심층신경망을 이용한 소스 코드 원작자 식별)

  • Rhim, Jisu;Abuhmed, Tamer
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.373-378
    • /
    • 2019
  • Since many programming sources are open online, problems with reckless plagiarism and copyrights are occurring. Among them, source codes produced by repeated authors may have unique fingerprints due to their programming characteristics. This paper identifies each author by learning from a Google Code Jam program source using deep neural network. In this case, the original creator's source is to be vectored using a pre-processing instrument such as predictive-based vector or frequency-based approach, TF-IDF, etc. and to identify the original program source by learning by using a deep neural network. In addition a language-independent learning system was constructed using a pre-processing machine and compared with other existing learning methods. Among them, models using TF-IDF and in-depth neural networks were found to perform better than those using other pre-processing or other learning methods.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

A Deep Learning Approach for Covid-19 Detection in Chest X-Rays

  • Sk. Shalauddin Kabir;Syed Galib;Hazrat Ali;Fee Faysal Ahmed;Mohammad Farhad Bulbul
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.125-134
    • /
    • 2024
  • The novel coronavirus 2019 is called COVID-19 has outspread swiftly worldwide. An early diagnosis is more important to control its quick spread. Medical imaging mechanics, chest calculated tomography or chest X-ray, are playing a vital character in the identification and testing of COVID-19 in this present epidemic. Chest X-ray is cost effective method for Covid-19 detection however the manual process of x-ray analysis is time consuming given that the number of infected individuals keep growing rapidly. For this reason, it is very important to develop an automated COVID-19 detection process to control this pandemic. In this study, we address the task of automatic detection of Covid-19 by using a popular deep learning model namely the VGG19 model. We used 1300 healthy and 1300 confirmed COVID-19 chest X-ray images in this experiment. We performed three experiments by freezing different blocks and layers of VGG19 and finally, we used a machine learning classifier SVM for detecting COVID-19. In every experiment, we used a five-fold cross-validation method to train and validated the model and finally achieved 98.1% overall classification accuracy. Experimental results show that our proposed method using the deep learning-based VGG19 model can be used as a tool to aid radiologists and play a crucial role in the timely diagnosis of Covid-19.

A Study on the Prediction Diagnosis System Improvement by Error Terms and Learning Methodologies Application (오차항과 러닝 기법을 활용한 예측진단 시스템 개선 방안 연구)

  • Kim, Myung Joon;Park, Youngho;Kim, Tai Kyoo;Jung, Jae-Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.783-793
    • /
    • 2019
  • Purpose: The purpose of this study is to apply the machine and deep learning methodology on error terms which are continuously auto-generated on the sensors with specific time period and prove the improvement effects of power generator prediction diagnosis system by comparing detection ability. Methods: The SVM(Support Vector Machine) and MLP(Multi Layer Perception) learning procedures were applied for predicting the target values and sequentially producing the error terms for confirming the detection improvement effects of suggested application. For checking the effectiveness of suggested procedures, several detection methodologies such as Cusum and EWMA were used for the comparison. Results: The statistical analysis result shows that without noticing the sequential trivial changes on current diagnosis system, suggested approach based on the error term diagnosis is sensing the changes in the very early stages. Conclusion: Using pattern of error terms as a diagnosis tool for the safety control process with SVM and MLP learning procedure, unusual symptoms could be detected earlier than current prediction system. By combining the suggested error term management methodology with current process seems to be meaningful for sustainable safety condition by early detecting the symptoms.

Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors (머신러닝을 이용한 알루미늄 전해 커패시터 고장예지)

  • Park, Jeong-Hyun;Seok, Jong-Hoon;Cheon, Kang-Min;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

A Comparative Analysis of the Pre-Processing in the Kaggle Titanic Competition

  • Tai-Sung, Hur;Suyoung, Bang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2023
  • Based on the problem of 'Tatanic - Machine Learning from Disaster', a representative competition of Kaggle that presents challenges related to data science and solves them, we want to see how data preprocessing and model construction affect prediction accuracy and score. We compare and analyze the features by selecting seven top-ranked solutions with high scores, except when using redundant models or ensemble techniques. It was confirmed that most of the pretreatment has unique and differentiated characteristics, and although the pretreatment process was almost the same, there were differences in scores depending on the type of model. The comparative analysis study in this paper is expected to help participants in the kaggle competition and data science beginners by understanding the characteristics and analysis flow of the preprocessing methods of the top score participants.

Design of the Management System for Students at Risk of Dropout using Machine Learning (머신러닝을 이용한 학업중단 위기학생 관리시스템의 설계)

  • Ban, Chae-Hoon;Kim, Dong-Hyun;Ha, Jong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1255-1262
    • /
    • 2021
  • The proportion of students dropping out of universities is increasing year by year, and they are trying to identify risk factors and eliminate them in advance to prevent dropouts. However, there is a problem in the management of students at risk of dropping out and the forecast is inaccurate because crisis students are managed through the univariable analysis of specific risk factors. In this paper, we identify risk factors for university dropout and analyze multivariables through machine learning method to predict university dropout. In addition, we derive the optimization method by evaluation performance for various prediction methods and evaluate the correlation and contribution between risk factors that cause university dropout.