• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.029 seconds

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Effective Detection of Target Region Using a Machine Learning Algorithm (기계 학습 알고리즘을 이용한 효과적인 대상 영역 분할)

  • Jang, Seok-Woo;Lee, Gyungju;Jung, Myunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.697-704
    • /
    • 2018
  • Since the face in image content corresponds to individual information that can distinguish a specific person from other people, it is important to accurately detect faces not hidden in an image. In this paper, we propose a method to accurately detect a face from input images using a deep learning algorithm, which is one of the machine learning methods. In the proposed method, image input via the red-green-blue (RGB) color model is first changed to the luminance-chroma: blue-chroma: red-chroma ($YC_bC_r$) color model; then, other regions are removed using the learned skin color model, and only the skin regions are segmented. A CNN model-based deep learning algorithm is then applied to robustly detect only the face region from the input image. Experimental results show that the proposed method more efficiently segments facial regions from input images. The proposed face area-detection method is expected to be useful in practical applications related to multimedia and shape recognition.

Forecasting of Iron Ore Prices using Machine Learning (머신러닝을 이용한 철광석 가격 예측에 대한 연구)

  • Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-72
    • /
    • 2020
  • The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.

IoT Security and Machine Learning

  • Almalki, Sarah;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.103-114
    • /
    • 2022
  • The Internet of Things (IoT) is one of the fastest technologies that are used in various applications and fields. The concept of IoT will not only be limited to the fields of scientific and technical life but will also gradually spread to become an essential part of our daily life and routine. Before, IoT was a complex term unknown to many, but soon it will become something common. IoT is a natural and indispensable routine in which smart devices and sensors are connected wirelessly or wired over the Internet to exchange and process data. With all the benefits and advantages offered by the IoT, it does not face many security and privacy challenges because the current traditional security protocols are not suitable for IoT technologies. In this paper, we presented a comprehensive survey of the latest studies from 2018 to 2021 related to the security of the IoT and the use of machine learning (ML) and deep learning and their applications in addressing security and privacy in the IoT. A description was initially presented, followed by a comprehensive overview of the IoT and its applications and the basic important safety requirements of confidentiality, integrity, and availability and its application in the IoT. Then we reviewed the attacks and challenges facing the IoT. We also focused on ML and its applications in addressing the security problem on the IoT.

A Study on the Analysis of Factors for the Golden Glove Award by using Machine Learning (머신러닝을 이용한 골든글러브 수상 요인 분석에 대한 연구)

  • Uem, Daeyeob;Kim, Seongyong
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.48-56
    • /
    • 2022
  • The importance of data analysis in baseball has been increasing after the success of MLB's Oakland which applied Billy Beane's money ball theory, and the 2020 KBO winner NC Dinos. Various studies using data in baseball has been conducted not only in the United States but also in Korea, In particular, the models using deep learning and machine learning has been suggested. However, in the previous studies using deep learning and machine learning, the focus is only on predicting the win or loss of the game, and there is a limitation in that it is difficult to interpret the results of which factors have an important influence on the game. In this paper, to investigate which factors is important by position, the prediction model for the Golden Glove award which is given for the best player by position is developed. To develop the prediction model, XGBoost which is one of boosting method is used, which also provide the feature importance which can be used to interpret the factors for prediction results. From the analysis, the important factors by position are identified.

CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images (스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

CBIR-based Data Augmentation and Its Application to Deep Learning (CBIR 기반 데이터 확장을 이용한 딥 러닝 기술)

  • Kim, Sesong;Jung, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.403-408
    • /
    • 2018
  • Generally, a large data set is required for learning of deep learning. However, since it is not easy to create large data sets, there are a lot of techniques that make small data sets larger through data expansion such as rotation, flipping, and filtering. However, these simple techniques have limitation on extendibility because they are difficult to escape from the features already possessed. In order to solve this problem, we propose a method to acquire new image data by using existing data. This is done by retrieving and acquiring similar images using existing image data as a query of the content-based image retrieval (CBIR). Finally, we compare the performance of the base model with the model using CBIR.

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

Deep Interpretable Learning for a Rapid Response System (긴급대응 시스템을 위한 심층 해석 가능 학습)

  • Nguyen, Trong-Nghia;Vo, Thanh-Hung;Kho, Bo-Gun;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.805-807
    • /
    • 2021
  • In-hospital cardiac arrest is a significant problem for medical systems. Although the traditional early warning systems have been widely applied, they still contain many drawbacks, such as the high false warning rate and low sensitivity. This paper proposed a strategy that involves a deep learning approach based on a novel interpretable deep tabular data learning architecture, named TabNet, for the Rapid Response System. This study has been processed and validated on a dataset collected from two hospitals of Chonnam National University, Korea, in over 10 years. The learning metrics used for the experiment are the area under the receiver operating characteristic curve score (AUROC) and the area under the precision-recall curve score (AUPRC). The experiment on a large real-time dataset shows that our method improves compared to other machine learning-based approaches.

Fault state detection and remaining useful life prediction in AC powered solenoid operated valves based on traditional machine learning and deep neural networks

  • Utah, M.N.;Jung, J.C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1998-2008
    • /
    • 2020
  • Solenoid operated valves (SOV) play important roles in industrial process to control the flow of fluids. Solenoid valves can be found in so many industries as well as the nuclear plant. The ability to be able to detect the presence of faults and predicting the remaining useful life (RUL) of the SOV is important in maintenance planning and also prevent unexpected interruptions in the flow of process fluids. This paper proposes a fault diagnosis method for the alternating current (AC) powered SOV. Previous research work have been focused on direct current (DC) powered SOV where the current waveform or vibrations are monitored. There are many features hidden in the AC waveform that require further signal analysis. The analysis of the AC powered SOV waveform was done in the time and frequency domain. A total of sixteen features were obtained and these were used to classify the different operating modes of the SOV by applying a machine learning technique for classification. Also, a deep neural network (DNN) was developed for the prediction of RUL based on the failure modes of the SOV. The results of this paper can be used to improve on the condition based monitoring of the SOV.