• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.026 seconds

Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management

  • Choi, Eun Jeong;Kim, Dong Keun
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • Objectives: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Correlation Analysis of Dataset Size and Accuracy of the CNN-based Malware Detection Algorithm (CNN Mobile Net 기반 악성코드 탐지 모델에서의 학습 데이터 크기와 검출 정확도의 상관관계 분석)

  • Choi, Dong Jun;Lee, Jae Woo
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.53-60
    • /
    • 2020
  • At the present stage of the fourth industrial revolution, machine learning and artificial intelligence technologies are rapidly developing, and there is a movement to apply machine learning technology in the security field. Malicious code, including new and transformed, generates an average of 390,000 a day worldwide. Statistics show that security companies ignore or miss 31 percent of alarms. As many malicious codes are generated, it is becoming difficult for humans to detect all malicious codes. As a result, research on the detection of malware and network intrusion events through machine learning is being actively conducted in academia and industry. In international conferences and journals, research on security data analysis using deep learning, a field of machine learning, is presented. have. However, these papers focus on detection accuracy and modify several parameters to improve detection accuracy but do not consider the ratio of dataset. Therefore, this paper aims to reduce the cost and resources of many machine learning research by finding the ratio of dataset that can derive the highest detection accuracy in CNN Mobile net-based malware detection model.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

A Study on the Use of Machine Learning Models in Bridge on Slab Thickness Prediction (머신러닝 기법을 활용한 교량데이터 설계 시 슬래브두께 예측에 관한 연구)

  • Chul-Seung Hong;Hyo-Kwan Kim;Se-Hee Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2023
  • This paper proposes to apply machine learning to the process of predicting the slab thickness based on the structural analysis results or experience and subjectivity of engineers in the design of bridge data construction to enable digital-based decision-making. This study aims to build a reliable design environment by utilizing machine learning techniques to provide guide values to engineers in addition to structural analysis for slab thickness selection. Based on girder bridges, which account for the largest proportion of bridge data, a prediction model process for predicting slab thickness among superstructures was defined. Various machine learning models (Linear Regress, Decision Tree, Random Forest, and Muliti-layer Perceptron) were competed for each process to produce the prediction value for each process, and the optimal model was derived. Through this study, the applicability of machine learning techniques was confirmed in areas where slab thickness was predicted only through existing structural analysis, and an accuracy of 95.4% was also obtained. models can be utilized in a more reliable construction environment if the accuracy of the prediction model is improved by expanding the process

Neural-network based Computerized Emotion Analysis using Multiple Biological Signals (다중 생체신호를 이용한 신경망 기반 전산화 감정해석)

  • Lee, Jee-Eun;Kim, Byeong-Nam;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Emotion affects many parts of human life such as learning ability, behavior and judgment. It is important to understand human nature. Emotion can only be inferred from facial expressions or gestures, what it actually is. In particular, emotion is difficult to classify not only because individuals feel differently about emotion but also because visually induced emotion does not sustain during whole testing period. To solve the problem, we acquired bio-signals and extracted features from those signals, which offer objective information about emotion stimulus. The emotion pattern classifier was composed of unsupervised learning algorithm with hidden nodes and feature vectors. Restricted Boltzmann machine (RBM) based on probability estimation was used in the unsupervised learning and maps emotion features to transformed dimensions. The emotion was characterized by non-linear classifiers with hidden nodes of a multi layer neural network, named deep belief network (DBN). The accuracy of DBN (about 94 %) was better than that of back-propagation neural network (about 40 %). The DBN showed good performance as the emotion pattern classifier.

The long-term agricultural weather forcast methods using machine learning and GloSea5 : on the cultivation zone of Chinese cabbage. (기계학습과 GloSea5를 이용한 장기 농업기상 예측 : 고랭지배추 재배 지역을 중심으로)

  • Kim, Junseok;Yang, Miyeon;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Systematic farming can be planned and managed if long-term agricultural weather information of the plantation is available. Because the greatest risk factor for crop cultivation is the weather. In this study, a method for long-term predicting of agricultural weather using the GloSea5 and machine learning is presented for the cultivation of Chinese cabbage. The GloSea5 is a long-term weather forecast that is available up to 240 days. The deep neural networks and the spatial randomforest were considered as the method of machine learning. The longterm prediction performance of the deep neural networks was slightly better than the spatial randomforest in the sense of root mean squared error and mean absolute error. However, the spatial randomforest has the advantage of predicting temperatures with a global model, which reduces the computation time.

The Study for Improvement of Data-Quality of Cut-Slope Management System Using Machine Learning (기계학습을 활용한 도로비탈면관리시스템 데이터 품질강화에 관한 연구)

  • Lee, Se-Hyeok;Kim, Seung-Hyun;Woo, Yonghoon;Moon, Jae-Pil;Yang, Inchul
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • Database of Cut-slope management system (CSMS) has been constructed based on investigations of all slopes on the roads of the whole country. The investigation data is documented by human, so it is inevitable to avoid human-error such as missing-data and incorrect entering data into computer. The goal of this paper is constructing a prediction model based on several machine-learning algorithms to solve those imperfection problems of the CSMS data. First of all, the character-type data in CSMS data must be transformed to numeric data. After then, two algorithms, i.g., multinomial logistic regression and deep-neural-network (DNN), are performed, and those prediction models from two algorithms are compared. Finally, it is identified that the accuracy of DNN-model is better than logistic model, and the DNN-model will be utilized to improve data-quality.

AI Education Programs for Deep-Learning Concepts (딥러닝 개념을 위한 인공지능 교육 프로그램)

  • Ryu, Miyoung;Han, SeonKwan
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2019
  • The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.

Case Analysis of Applications of Seismic Data Denoising Methods using Deep-Learning Techniques (심층 학습 기법을 이용한 탄성파 자료 잡음 제거 적용사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.72-88
    • /
    • 2020
  • Recent rapid advances in computer hardware performance have led to relatively low computational costs, increasing the number of applications of machine-learning techniques to geophysical problems. In particular, deep-learning techniques are gaining in popularity as the number of cases successfully solving complex and nonlinear problems has gradually increased. In this paper, applications of seismic data denoising methods using deep-learning techniques are introduced and investigated. Depending on the type of attenuated noise, these studies are grouped into denoising applications of coherent noise, random noise, and the combination of these two types of noise. Then, we investigate the deep-learning techniques used to remove the corresponding noise. Unlike conventional methods used to attenuate seismic noise, deep neural networks, a typical deep-learning technique, learn the characteristics of the noise independently and then automatically optimize the parameters. Therefore, such methods are less sensitive to generalized problems than conventional methods and can reduce labor costs. Several studies have also demonstrated that deep-learning techniques perform well in terms of computational cost and denoising performance. Based on the results of the applications covered in this paper, the pros and cons of the deep-learning techniques used to remove seismic noise are analyzed and discussed.