• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.026 seconds

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning (다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구)

  • Myunghwa Kim;Yeonjun Lee;Sangwoo Park;Kunwoo Kim;Taehee Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

Study of Deep Reinforcement Learning-Based Agents for Controlled Flight into Terrain (CFIT) Autonomous Avoidance (CFIT 자율 회피를 위한 심층강화학습 기반 에이전트 연구)

  • Lee, Yong Won;Yoo, Jae Leame
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.34-43
    • /
    • 2022
  • In Efforts to prevent CFIT accidents so far, have been emphasizing various education measures to minimize the occurrence of human errors, as well as enforcement measures. However, current engineering measures remain in a system (TAWS) that gives warnings before colliding with ground or obstacles, and even actual automatic avoidance maneuvers are not implemented, which has limitations that cannot prevent accidents caused by human error. Currently, various attempts are being made to apply machine learning-based artificial intelligence agent technologies to the aviation safety field. In this paper, we propose a deep reinforcement learning-based artificial intelligence agent that can recognize CFIT situations and control aircraft to avoid them in the simulation environment. It also describes the composition of the learning environment, process, and results, and finally the experimental results using the learned agent. In the future, if the results of this study are expanded to learn the horizontal and vertical terrain radar detection information and camera image information of radar in addition to the terrain database, it is expected that it will become an agent capable of performing more robust CFIT autonomous avoidance.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Exploring Predictive Models for Student Success in National Physical Therapy Examination: Machine Learning Approach

  • Bokyung Kim;Yeonseop Lee;Jang-hoon Shin;Yusung Jang;Wansuk Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.113-120
    • /
    • 2024
  • This study aims to assess the effectiveness of machine learning models in predicting the pass rates of physical therapy students in national exams. Traditional grade prediction methods primarily rely on past academic performance or demographic data. However, this study employed machine learning and deep learning techniques to analyze mock test scores with the goal of improving prediction accuracy. Data from 1,242 students across five Korean universities were collected and preprocessed, followed by analysis using various models. Models, including those generated and fine-tuned with the assistance of ChatGPT-4, were applied to the dataset. The results showed that H2OAutoML (GBM2) performed the best with an accuracy of 98.4%, while TabNet, LightGBM, and RandomForest also demonstrated high performance. This study demonstrates the exceptional effectiveness of H2OAutoML (GBM2) in predicting national exam pass rates and suggests that these AI-assisted models can significantly contribute to medical education and policy.

Performance Analysis of Data Augmentation for Surface Defects Detection (표면 결함 검출을 위한 데이터 확장 및 성능분석)

  • Kim, Junbong;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.669-674
    • /
    • 2018
  • Data augmentation is an efficient way to reduce overfitting on models and to improve a performance supplementing extra data for training. It is more important in deep learning based industrial machine vision. Because deep learning requires huge scale of learning data to learn a model, but acquisition of data can be limited in most of industrial applications. A very generic method for augmenting image data is to perform geometric transformations, such as cropping, rotating, translating and adjusting brightness of the image. The effectiveness of data augmentation in image classification has been reported, but it is rare in defect inspections. We explore and compare various basic augmenting operations for the metal surface defects. The experiments were executed for various types of defects and different CNN networks and analysed for performance improvements by the data augmentations.

Feature Extraction Using Convolutional Neural Networks for Random Translation (랜덤 변환에 대한 컨볼루션 뉴럴 네트워크를 이용한 특징 추출)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.515-521
    • /
    • 2020
  • Deep learning methods have been effectively used to provide great improvement in various research fields such as machine learning, image processing and computer vision. One of the most frequently used deep learning methods in image processing is the convolutional neural networks. Compared to the traditional artificial neural networks, convolutional neural networks do not use the predefined kernels, but instead they learn data specific kernels. This property makes them to be used as feature extractors as well. In this study, we compared the quality of CNN features for traditional texture feature extraction methods. Experimental results demonstrate the superiority of the CNN features. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented.

Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder

  • Song, Jae-Won;Yoon, Na-Rae;Jang, Soo-Min;Lee, Ga-Young;Kim, Bung-Nyun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.97-104
    • /
    • 2020
  • Deep learning (DL) is a kind of machine learning technique that uses artificial intelligence to identify the characteristics of given data and efficiently analyze large amounts of information to perform tasks such as classification and prediction. In the field of neuroimaging of neurodevelopmental disorders, various biomarkers for diagnosis, classification, prognosis prediction, and treatment response prediction have been examined; however, they have not been efficiently combined to produce meaningful results. DL can be applied to overcome these limitations and produce clinically helpful results. Here, we review studies that combine neurodevelopmental disorder neuroimaging and DL techniques to explore the strengths, limitations, and future directions of this research area.