• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.037 seconds

A Text Sentiment Classification Method Based on LSTM-CNN

  • Wang, Guangxing;Shin, Seong-Yoon;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.1-7
    • /
    • 2019
  • With the in-depth development of machine learning, the deep learning method has made great progress, especially with the Convolution Neural Network(CNN). Compared with traditional text sentiment classification methods, deep learning based CNNs have made great progress in text classification and processing of complex multi-label and multi-classification experiments. However, there are also problems with the neural network for text sentiment classification. In this paper, we propose a fusion model based on Long-Short Term Memory networks(LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification. This method will become an important way to optimize the model and improve the performance of the model.

Deep Learning-based Pothole Detection System (딥러닝을 이용한 포트홀 검출 시스템)

  • Hwang, Sung-jin;Hong, Seok-woo;Yoon, Jong-seo;Park, Heemin;Kim, Hyun-chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2021
  • The automotive industry is developing day by day. Among them, it is very important to prevent accidents while driving. However, despite the importance of developing automobile industry technology, accidents due to road defects increase every year, especially in the rainy season. To this end, we proposed a road defect detection system for road management by converging deep learning and raspberry pi, which show various possibilities. In this paper, we developed a system that visually displays through a map after analyzing the images captured by the Raspberry Pi and the route GPS. The deep learning model trained for this system achieved 96% accuracy. Through this system, it is expected to manage road defects efficiently at a low cost.

Proposing a New Approach for Detecting Malware Based on the Event Analysis Technique

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.107-114
    • /
    • 2023
  • The attack technique by the malware distribution form is a dangerous, difficult to detect and prevent attack method. Current malware detection studies and proposals are often based on two main methods: using sign sets and analyzing abnormal behaviors using machine learning or deep learning techniques. This paper will propose a method to detect malware on Endpoints based on Event IDs using deep learning. Event IDs are behaviors of malware tracked and collected on Endpoints' operating system kernel. The malware detection proposal based on Event IDs is a new research approach that has not been studied and proposed much. To achieve this purpose, this paper proposes to combine different data mining methods and deep learning algorithms. The data mining process is presented in detail in section 2 of the paper.

Lung Cancer Classification and Detection Using Deep Learning Technique

  • K.Sudha Rani;A.Suma Latha;S.Sunitha Ratnam;J.Bhavani;J.Srinivasa Rao;N.Kavitha Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.81-90
    • /
    • 2024
  • Lung cancer is a complex and frightening disease that typically results in death in both men and women. Therefore, it is more crucial to thoroughly and swiftly evaluate the malignant nodules. Recent years have seen the development of numerous strategies for diagnosing lung cancer, most of which use CT imaging. These techniques include supervisory and non-supervisory procedures. This study revealed that computed tomography scans are more suitable for obtaining reliable results. Lung cancer cannot be accurately predicted using unsupervised approaches. As a result, supervisory techniques are crucial in lung cancer prediction. Convolutional neural networks (CNNs) based on deep learning techniques has been used in this paper. Convolutional neural networks (CNN)-based deep learning procedures have produced results that are more precise than those produced by traditional machine learning procedures. A number of statistical measures, including accuracy, precision, and f1, have been computed.

Deep Learning Research Trends Analysis with Ego Centered Topic Citation Analysis (자아 중심 주제 인용분석을 활용한 딥러닝 연구동향 분석)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.7-32
    • /
    • 2017
  • Recently, deep learning has been rapidly spreading as an innovative machine learning technique in various domains. This study explored the research trends of deep learning via modified ego centered topic citation analysis. To do that, a few seed documents were selected from among the retrieved documents with the keyword 'deep learning' from Web of Science, and the related documents were obtained through citation relations. Those papers citing seed documents were set as ego documents reflecting current research in the field of deep learning. Preliminary studies cited frequently in the ego documents were set as the citation identity documents that represents the specific themes in the field of deep learning. For ego documents which are the result of current research activities, some quantitative analysis methods including co-authorship network analysis were performed to identify major countries and research institutes. For the citation identity documents, co-citation analysis was conducted, and key literatures and key research themes were identified by investigating the citation image keywords, which are major keywords those citing the citation identity document clusters. Finally, we proposed and measured the citation growth index which reflects the growth trend of the citation influence on a specific topic, and showed the changes in the leading research themes in the field of deep learning.

Multiple Discriminative DNNs for I-Vector Based Open-Set Language Recognition (I-벡터 기반 오픈세트 언어 인식을 위한 다중 판별 DNN)

  • Kang, Woo Hyun;Cho, Won Ik;Kang, Tae Gyoon;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.958-964
    • /
    • 2016
  • In this paper, we propose an i-vector based language recognition system to identify the spoken language of the speaker, which uses multiple discriminative deep neural network (DNN) models analogous to the multi-class support vector machine (SVM) classification system. The proposed model was trained and tested using the i-vectors included in the NIST 2015 i-vector Machine Learning Challenge database, and shown to outperform the conventional language recognition methods such as cosine distance, SVM and softmax NN classifier in open-set experiments.

Performance Comparison of Neural Network and Gradient Boosting Machine for Dropout Prediction of University Students

  • Hyeon Gyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.49-58
    • /
    • 2023
  • Dropouts of students not only cause financial loss to the university, but also have negative impacts on individual students and society together. To resolve this issue, various studies have been conducted to predict student dropout using machine learning. This paper presents a model implemented using DNN (Deep Neural Network) and LGBM (Light Gradient Boosting Machine) to predict dropout of university students and compares their performance. The academic record and grade data collected from 20,050 students at A University, a small and medium-sized 4-year university in Seoul, were used for learning. Among the 140 attributes of the collected data, only the attributes with a correlation coefficient of 0.1 or higher with the attribute indicating dropout were extracted and used for learning. As learning algorithms, DNN (Deep Neural Network) and LightGBM (Light Gradient Boosting Machine) were used. Our experimental results showed that the F1-scores of DNN and LGBM were 0.798 and 0.826, respectively, indicating that LGBM provided 2.5% better prediction performance than DNN.

Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique (심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델)

  • LEE, JAEYOON;PINEDA, ISRAEL TORRES;GIAP, VAN-TIEN;LEE, DONGKEUN;KIM, YOUNG SANG;AHN, KOOK YOUNG;LEE, YOUNG DUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.

Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model

  • Seung-Joong Lee;Sung-Oong Choi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.547-559
    • /
    • 2023
  • We evaluated the applicability of machine learning techniques and the Kuz-Ram model for predicting the mean fragmentation size in open-pit mines. The characteristics of the in-situ rock considered here were uniaxial compressive strength, tensile strength, rock factor, and mean in-situ block size. Seventy field datasets that included these characteristics were collected to predict the mean fragmentation size. Deep neural network, support vector machine, and extreme gradient boosting (XGBoost) models were trained using the data. The performance was evaluated using the root mean squared error (RMSE) and the coefficient of determination (r2). The XGBoost model had the smallest RMSE and the highest r2 value compared with the other models. Additionally, when analyzing the error rate between the measured and predicted values, XGBoost had the lowest error rate. When the Kuz-Ram model was applied, low accuracy was observed owing to the differences in the characteristics of data used for model development. Consequently, the proposed XGBoost model predicted the mean fragmentation size more accurately than other models. If its performance is improved by securing sufficient data in the future, it will be useful for improving the blasting efficiency at the target site.

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.